麻豆精品在线播放_精品视频中文字幕_羞羞动漫在线观看_日韩高清毛片_国产成a人亚洲精品_国产一区二区网站_国产九九久久_99热在线免费_国产男男gay体育生网站_国产深夜福利

熱門(mén)搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購(gòu)物車(chē) 1 種商品 - 共0元
當(dāng)前位置: 首頁(yè) > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

久久天堂影院| 国产.高清,露脸,对白| 性欧美激情| 国偷自拍| 特黄网站| 激情综合视频| 色婷婷影院| 大陆极品少妇内射aaaaa| 国产三级精品在线观看| 香蕉视频色版| 懂色a v| 久久久久久久黄色| 大香伊蕉| 四虎影像| 久久免费看少妇高潮v片特黄| 国产视频在线一区| 日韩欧美视频在线免费观看| 亚洲欧美色图小说| 极品熟妇大蝴蝶20p| 影音先锋中文字幕一区| 男生舔女生下面网站| 网站一级片| 黄色小视频国产| 五月天婷婷久久| 97免费在线视频| 国产精品色网| 伊人福利视频| 久久久午夜影院| 成人性生交大片免费卡看| www国产精品| 国产精品毛片久久久久久久| 成人小视频在线免费观看| 久久久久久九九九九| 自拍偷拍亚洲| 视频成人免费| 1024你懂的日韩| 日韩av网页| 绿帽贡献娇妻一二三区| 久操伊人网| 欧美成人天堂| 一级片少妇| 男男av网站| 老头吃奶性行交| 91亚色视频| 午夜国产在线观看| 午夜激情亚洲| 日本大胆裸体做爰视频| 奇米色播| 亚洲精品激情| 97天天操| 日韩欧美在线观看视频| 色视频一区| 第一福利视频| 男女啊啊啊视频| 日韩欧美视频在线播放| 亚洲精品xxxx| 午夜tv| 亚色在线观看| 香蕉网站在线观看| 成都电影免费大全| 婷婷开心激情网| 亚洲第一女人av| 6080一级片| 免费a级观看| 无码人妻少妇色欲av一区二区| 青青操原| 一级欧美在线| 毛片在线播放网址| 91久久综合| 爱情岛论坛亚洲品质自拍| 2022国产精品| 91老司机在线| 欧美日韩aaaaaa| 特级大胆西西4444人体| 看黄免费| 午夜视频欧美| 五月天中文字幕mv在线 | 天美av电影| 亚洲精品666| 日韩欧美高清视频| 在线综合视频| 狠狠操av| 91手机在线观看| 人人妻人人澡人人爽精品| 最新黄色av| 白石茉莉奈黑人| 深夜av在线| 91国模| 亚洲制服一区| 欧美成人精品一区二区男人小说| 国产高清www| 日本特黄一级| 狂野欧美性猛交xxxx777| 啊啊啊久久久| 亚洲天堂不卡| 美腿丝袜亚洲色图| 成人免费高清在线观看| 中文字幕精品一区二区三区精品| 久久密| 丝袜脚交免费网站xx| 黄色小视频在线观看免费| 高潮一区二区三区| 香蕉久久夜色精品国产| 天天综合网久久综合网| 99久久精品一区二区成人| 激情五月婷婷激情| 日韩成人av在线播放| 亚洲超丰满肉感bbw| 国产精品免费看久久久无码| 亚洲一卡二卡在线观看| 久久久久久久久久福利| 欧洲成人免费| 国内外成人在线视频| 一级在线| 小嫩嫩12欧美| 九九色精品| 老妇荒淫牲艳史| 久久精品成人一区二区三区蜜臀| 国产精品久久一| 九色91视频| free性黑人娇小videos| 久久国产视频一区| 91麻豆成人| 久久久精品国产| 免费久久久久| 国产一区免费视频| 久久夜靖品2区| 深夜福利电影| 秋葵视频成人| 日本麻豆视频| 国产成人啪一区二区| 天天干女人| 91黄图| 老色鬼av| 黄色欧美日韩| 经典一区二区三区| 在线观看亚洲欧美| 在线看福利影| 久久黑人| 国精产品一品二品国精品69xx | 日韩性插| 蜜桃av噜噜一区二区三区网址| 一本大道视频| av网站在线看| 图书馆的女友在线观看| 色爱综合网| 18岁禁黄网站| 国内精品久久久久久| 三级第一页| 久久久精品国产| 天天干天天干天天操| 手机av免费观看| 黄色天天影视| 免费下拉式漫画阅读网站| 国产麻豆天美果冻无码视频| a级片免费| 色激情网| 国产自在线拍| 久久激情av| av成人精品| 香蕉视频一级| 可以免费看av| 中文字幕91| 伊人网网站| 欧美另类在线播放| 偷拍福利视频| 亚洲麻豆| 免费在线成人av| 在线观看亚洲欧美| 777国产成人入口| 日韩午夜电影| 亚洲av无码久久精品色欲| 中文第一页| 毛片网站在线观看| 高清不卡一区二区| 美女爱爱视频| 亚洲av无码久久忘忧草| 黄色大片日本| 超碰人人人| 麻豆精品国产传媒av| av免费久久| 韩国性经典xxxxhd| 亚洲欧洲一二三区| 96免费视频| 日本三级理论片| 爱情岛黄色| 看av网站| 国产在线不卡av| 色图社区| 免费看的av| 男生舔女生下面网站| 国产精品无码av一区二区三区| 2022国产精品| 黄色av网址在线| 美女黄站| 91美女在线| 看片网址国产福利av中文字幕| 色眯眯av| 曰韩av| free性满足hd性video| 久9精品| 亚洲精品白浆高清久久久久久| 日韩片在线| 亚洲国产第一| 婷婷色网站| 久色在线| 一级免费观看视频| 天天免费视频| 欧美特黄aaa| 亚洲一区二区三区电影| 在线观看不卡| 国产你懂得| 美女福利网站| a久久久久| 国产不卡视频在线| 在线观看国产一区二区三区| 蜜臀一区| 国产日日干| 手机av免费在线| 欧美国产一区二区在线观看| 色日本视频| 麻豆视频软件| 四虎精品永久在线| av一二区| 日韩av在线看免费观看| 手机免费av| 91激情视频在线观看| 免费日本高清| 国产精品成人va在线观看| 久国久产久精永久网页| 白嫩初高中害羞小美女| 日本美女黄色| 四虎4545www国产精品| 外国黄色网| 亚洲va韩国va欧美va精品| 日本久操| 爽爽网| 久久精品人人| 中文在线字幕av| 欧美一卡二卡在线观看| 丝袜导航| 成人三级在线视频| 男女插孔视频| 亚洲欧美tv| 欧美在线高清| 日韩伦理一区二区| 成人性生交大片免费卡看| 91九色蝌蚪91por成人| 日韩av中文在线| 色五丁香| 都市激情亚洲| 国产精品免费看久久久无码| 日不卡| 国产成人aⅴ| 成人91免费视频| 狠狠操欧美| 国产一区日韩| 中文在线视频| 国产黄色在线免费观看| 亚洲岛国片| 国产 丝袜 欧美中文 另类| 久久综合九色| 欧美伊人网| 免费黄在线| 人妻另类 专区 欧美 制服| 欧美大片黄色| 亚洲高清二区| 天天天天| 欧美裸体网站| 国产在线视频在线观看| 欧美一级一区二区三区| 亚洲色图88| 亚洲天堂不卡| 精品中文一区二区三区| 第一av在线| 欧美日韩制服| 亚洲视频99| 俺也去在线视频| 国产福利视频| 最新日韩三级| 欧美a在线播放| 成人激情视频在线观看| 色屁屁一区二区三区| 国产一二三在线观看| 黄色日韩视频| 成人在线电影网站| 在线看片网站| 久久国内视频| 一二三区av| 日韩欧美在线精品| 一级久久久| 桃色av网站| 国产精品免费看| 亚洲国产精品久久久| www久久久久久| 成年女人色毛片| 草莓视频www| 亚洲一二三四| 亚洲成人黄色网| 加勒比伊人| 被黑人各种姿势猛c哭h文1| 免费看操片| 免费成人国产| 欧美高清视频一区二区| 午夜黄色在线观看| 鲁死你资源站| 私密视频在线观看| 可以在线观看的av网站| 不卡一二区| 第一导航福利| 日韩亚洲欧美在线| 日韩网| 国产一极片| 青青草精品在线| 57pao国产精品一区| 国产免费资源| 福利电影一区| 黄色的毛片| 夜夜综合| 在线观看日韩| 男人天堂黄色| 性欧美激情| 国产丝袜高跟| www.激情.com| 欧美大片高清免费观看| 黄色视屏软件| 欧美永久精品| 啪啪免费| 一区二区三区 日韩| 最近中文字幕在线| 国产免费一区二区三区免费视频| av在线看片| av资源吧首页| 午夜特片网| 亚洲视频一| 亚洲免费区| 欧美老肥妇做.爰bbww视频| 国产在线a视频| 日韩欧美黄色大片| 最新版天堂资源在线| 好男人天堂网| 久久久亚洲国产| 亚洲国产精品久久久久久6q| 亚洲黄色免费视频| 中文字幕25页| 国产91精品在线播放| 特黄网站| 一区二区在线免费观看| 色骚综合| 成人福利社| 欧美黄色一级生活片| 亚洲高清有码中文字| 后进极品白嫩翘臀在线视频| 精品爆乳一区二区三区无码av| 狠狠干美女| 天天操狠狠操夜夜操| 亚洲视频自拍偷拍| 亚洲成av人在线观看| 激情拍拍拍| 激情综合网五月| 黄黄的网站| 欧美亚洲第一页| 精品成人无码久久久久久| 欧美春色| 亚洲一区成人在线| 黄色激情四射| 老色鬼av| 精品无码三级在线观看视频| 久久福利国产| 亚洲经典一区二区三区| 小污女导航| 高h言情| 欧美啊啊啊| 午夜一区在线| 女人看黄色网| 丝袜天堂| 中文字幕一区二区三区人妻| 18av在线视频| 日韩av黄色片| 欧av在线| 国产一区免费视频| 日本毛片高清免费视频| 亚洲精品女人久久久| 91精品国产高清| 亚洲私人网站| 免费观看国产视频| 亚洲精品xxxx| 中文字幕www| 国产sm在线观看| 久久成人在线视频| 美女被变态侵犯| www一区二区三区| 在线观看成人小视频| 国产一级二级三级| 中国黄色免费| 久久国产中文字幕| 91精品久久久久久久99蜜桃| 97国产精品| 成人激情视频在线播放| av成人在线看| www.激情.com| 小嫩嫩12欧美| 亚洲成色| 中文字幕一区二区三区四区视频 | 国产黄色在线看| www.亚洲在线| 国模大尺度一区二区三区| 欧美经典一区| 欧美精品九九| 日本亚洲黄色| 精品欧美久久久| 天天干狠狠爱| 黄色一级小视频| 香蕉茄子视频| 人人爽人人插| 中文字幕最新| 四虎影院在线观看免费| 久久午夜无码鲁丝片午夜精品| 日本美女性生活视频| 国产蜜臀97一区二区三区| 性欧美在线视频观看| 真实乱偷全部视频| 久久99伊人| 69av在线| 亚洲乱乱| 黄污视频在线免费观看| 欧美精品1区2区3区| 日本欧美不卡| 婷婷九月丁香| 任你躁av一区二区三区| 男人天堂黄色| 尤物最新网址| 日本欧美不卡| 精品人妻二区中文字幕| 老头吃奶性行交| 美女爱爱视频| 亚洲va韩国va欧美va| 国精产品一品二品国精品69xx| 欧美a在线观看| 做爰视频毛片视频| 麻豆午夜| 超碰999| 金瓶狂野欧美性猛交xxxx| 西西人体做爰大胆gogo| 老熟妇高潮一区二区高清视频| 男女啊啊啊视频| 波多野结衣在线免费视频| 欧美一级一级一级| 亚洲精品激情| 欧美性生交xxxxx久久久| 91高清免费观看| 欧美在线一级| 777色视频| 中文在线字幕av| 色综合视频网| 亚洲免费福利视频| 欧美精品aa| 日本色综合网| 久久性网| 无码人妻av一区二区三区波多野| 无码视频一区二区三区在线观看| 无码人妻精品一区二区蜜桃百度| 最污的网站| 一本色道久久综合熟妇| 91操碰| 5级黄色片| 特级大胆西西4444人体| 国产亚洲精久久久久久| 亚洲自拍成人| 精品女同一区| av一级黄色片| 亚洲欧洲日产国码av系列天堂| 欧洲日本在线| 极品销魂美女一区二区| 明日花绮罗高潮无打码| 自由成熟xxxx色视频| 日韩第一页在线| 国产性猛交xxxx免费看久久| 日韩高清成人| 久久久久久久伊人| 久久99精品久久只有精品| av福利在线播放| 日韩成人av在线播放| 打屁股视频网站| 成人动作片| 国产视频在线一区| 日韩簧片在线观看| 青青欧美| 久久丝袜美腿| 俄罗斯特级毛片| 在线观看国产免费av| 亚洲午夜无码毛片av久久京东热| 欧美性bbw| 九草在线| 欧美日韩在线不卡| 久艹在线观看视频| 一级特黄aaa| 日本在线小视频| 手机免费av| 欧美激情va永久在线播放| 最近中文字幕第一页| 国偷自拍| 国产精品黄色| 国产日韩a| 在线午夜av| 三级黄色短视频| 一级大片在线观看| 午夜影院入口| 成人免费黄色网址| 欧美69精品久久久久久不卡| 国产第一精品| 国产人妖在线| 久久亚洲一区二区三区四区五区高| 男人爽女人下面动态图| 久久女同互慰一区二区三区| 在线观看福利片| 色综合加勒比| 午夜精品视频在线观看| 美女啪啪网| 一级片少妇| 最污的网站| 日韩精品久久久久久久玫瑰园| 丁香六月综合激情| 黄网站免费观看| 亚洲国产日韩av| 欧美成人天堂| 欧美人与动物xxxx| 日本 奴役 捆绑 受虐狂xxxx| 第一导航福利| 天堂在线精品视频| 日韩理论片在线| 91在线看视频| 国产片一区二区| 免费在线网站| 天天操天天干天天舔| 极品少妇网站| 中文字幕国产日韩| 暧暧视频在线观看| 国产精品嫩草影院桃色| 亚洲视频99| 小香蕉影院| 久久久久亚洲AV成人网人人小说| 97一级片| 亚洲自拍在线观看| 99热成人| 少妇激情一区二区三区| 五月婷婷天堂| 激情综合小说| 91资源在线视频| 91碰碰| 九九爱国产| 欧美视频观看| 亚洲精品动漫在线观看| 蜜乳视频在线观看| 成人免费xxxxx在线观看| 精品中文一区二区三区| 一级二级毛片| 91大神在线免费观看| 国产一区视频免费观看| 久草热在线观看| 色哟哟视频在线观看| 自拍偷拍亚洲天堂| 大尺度av| 日韩中文字幕精品视频| 久久久精品波多野结衣av| 厨房性猛交hd| 男女激情久久| 亚洲国产第一| 蜜桃91麻豆精品一二三区| 欧美成人精品一区二区男人小说 | 看片网址国产福利av中文字幕| 免费的日本网站| 欧美视频观看| 亚洲一区欧洲二区| 玉女心经是什么意思| av先锋影音| 夫妻性生活自拍| 日韩欧美精品在线观看| 91九色国产ts另类人妖 | 亚洲一区黄片| 亚洲色综合| 国产精品免费看久久久无码| 97操操| 91欧美激情一区二区三区成人| 亚洲成人高清在线观看| 亚洲欧美日韩国产| 一级淫片免费看| 国产又粗又大又爽视频| 中文字幕中文字幕一区| 国产精品久久久久久无人区| 亚洲国产丝袜| 国产精品美女久久久久av爽| 日本女人一级片| 99精品一级欧美片免费播放| 国产哺乳奶水91在线播放| 全国男人的天堂天堂网| 亚洲色图21p| 91精品久久人妻一区二区夜夜夜| 亚洲毛片在线看| 色屁屁| 波多野结衣在线免费视频| 九色 国产| 香蕉视频网址| 奇米激情| 一区在线播放| 中文字幕日韩专区| 亚洲成av人在线观看| 奇米婷婷| 法国伦理少妇愉情| 欧美成人aaa| 成人午夜短视频| 18pao国产成视频永久免费| 亚洲av永久无码精品一百度影院| 这里只有精品999| 99精品在线观看| 日韩网| 久久伊人一区| 五月天导航| 国产日本欧美一区二区三区| 美女av在线播放| 亚洲一区二区蜜桃| 成人a级片| 国产欧美一区二区精品性| 影音先锋男人天堂| 欧美激情视频二区| 欧美女优一区二区| 激情涩涩| 久久综合第一页| 免费在线播放视频| 2019天天干| av免费天堂| www成人啪啪18软件| 日韩人妻无码精品综合区| 性插动态视频| 亚洲色图21p| 国产成人精品aa毛片| 男男av网站| 综合第一页| 欧美日韩高清不卡| 日日狠狠| 免费黄色91| 天天干天天干天天操| 少妇激情一区二区三区| 91操碰| 国产黄免费| 欧美激情成人在线视频| 第一导航福利| www.国产com| 亚洲人成777| 麻豆精品99| 日本在线视频www| 成人无码网www在线观看| 男人天堂黄色| 大香伊蕉| 成人欧美一区二区| 最好看的mv中文字幕国语电影| 男女啊啊啊视频| 一区二区三区 日韩| 国产午夜福利精品| 国产精品夜夜爽张柏芝| 激情综合小说| 日韩第六页| 最新日韩三级| 亚洲精品久久久久久无码色欲四季| 亚洲欧美综合视频| 婷婷激情站| 国产免费av一区二区| 午夜精品久久久| 青草国产| 亚洲一区黄片| 天天干天天草天天射| 久久久国产精品免费| 亚洲成av人乱码色午夜| a级性生活视频| 久久网中文字幕| 欧美丰满熟妇bbbbbb百度| 国产日产精品一区| 欧美高大丰满少妇xxxx| 久久影院亚洲| 超污视频网站| 天天干狠狠爱| 天天操天天干天天摸| 岛国av网| 欧美综合视频在线| 亚洲天堂欧美| 色先锋av| 亚洲成人高清在线观看| 青青在线播放| 亚洲黑丝在线| 久久久久久99精品| 欧美 国产精品| 欧美xxx黑人xxx水蜜桃| 靠逼在线观看| 无码人妻精品一区二区三区不卡| а√天堂8资源在线官网| 最新毛片地址| 性欧美18—19sex性高清| 美女免费网视频| 黄色电影在线免费观看| 好男人www社区| 精品中出| 18p在线观看| 雪花飘电影中文高清| 国产亚洲精品美女久久久| 美女一二三区| free性欧美hd另类| 久久伊人色| 久久性爱视频网站| 国产色资源| 久久经典| 一品道av| 强开乳罩摸双乳吃奶羞羞www| 国产95在线| 一级特毛片| 久色视频| 日韩欧美综合一区| 日本在线三级| 免费在线成人av| 91碰在线视频| 久久看毛片| 日本黄色免费看| 第一福利视频| 动漫一区二区| 成人免费黄色网址| 亚洲精品午夜久久久| 女生免费视频| 欧美freesex黑人又粗又大| 黄色国产毛片| 色噜噜狠狠狠综合曰曰曰| 亚洲精品一区二区三| 91九色蝌蚪国产| 亚洲伦理一区二区| 欧美理论在线观看| 亚洲av无码国产综合专区| 玉女心经是什么意思| 日本三级视频在线| 久久久午夜影院| 欧美日韩一级二级| 91手机在线观看| 男人天堂资源网| 香蕉视频色版| 午夜影院免费版| 亚洲成色| 好吊妞操| 尤物网址在线观看| 国产美女作爱全过程免费视频| 撸大师av| 免费视频一区二区| 天堂在线视频免费| 日本www在线观看| 99re热这里只有精品视频| 国产在线观看成人| 中文字幕天堂网| 色综合视频网| 久久久亚洲精品视频| 免费成人在线看| 四色成人av永久网址| 久久2019| 人人爽人人澡| 美女av导航| 熟妇人妻一区二区三区四区| 久久久久无码精品国产| 91在线看视频| 日韩无套| 九九综合九九| 黄色一区二区视频| 成人国产免费视频| 成人免费av| 天天拍夜夜爽| 亚洲国产中文字幕在线观看| 亚洲影视一区二区三区 | 免费黄色在线视频| 天天色中文| 国产精品一区二区久久精品爱涩| 少妇性l交大片免潘金莲| 99精品在线观看| 羞羞答答影院| 午夜一区在线| 一区二区三区电影在线观看| 女人被男人操| 国产情侣在线播放| 91精品国产综合久久久久久| 妹子干综合| 久久视频一区| 北岛玲av在线| 日韩va亚洲va欧美va久久| 女女同性女同一区二区三区按摩| 国产成人美女| 日本欧美不卡| 亚洲精品av在线播放| 国产精品jizz| 任你躁av一区二区三区| 俄罗斯特级毛片| 国产精品二区一区二区aⅴ污介绍| 午夜特片网| 国产黄色片在线观看| 日韩第一页在线| 久久久资源| 91久久精品国产91性色69| 亚洲国产三级在线| 无遮挡国产高潮视频免费观看| 欧美v亚洲| 水蜜桃一区二区三区| 伊人成人激情| 四级毛片| 欧美人xxx| 黄色一机片| 97精品人人a片免费看| 最新版天堂资源在线| 韩国av免费在线| 黄视频网站免费看| 午夜视频在线观看一区二区| 亚洲视频福利| 91福利在线观看| 欧美成人区| 又大又粗又长又爽正在观看| 日批视频免费播放| 亚洲一卡二卡三卡| 中国成人毛片| 欧美激情喷水| 欧美高大丰满少妇xxxx| 女同一区二区| 深夜宅男影院| 99re6在线| 精品女同一区二区三区| 视频成人免费| 欧美成人免费视频| 国产黄色片在线观看| 久久久资源| 91在线高清| 五月婷激情| 羞羞答答影院| 欧美精品一区二区三区视频| 91在线一区二区三区| 精品在线免费视频| 台湾佬久久| 国产精品 久久| a免费网站| 欧美国产一区二区三区| 国产破处av| 欧美一级艳片视频免费观看| 激情无遮挡| 亚洲特级片| 日本黄色影视| 免费激情视频网站| 黄色小视频国产| 国产精品mv| 老色鬼av| 精品视频免费播放| 色狠狠久久av五月综合| 男生操女生动漫| www.狠狠撸.com| 午夜国产片| 欧美性猛交ⅹ乱大交3| 捆绑束缚调教| 国内精品视频在线播放| 第四色视频| 91亚洲一区| 成人动漫一区二区| 中文字幕日韩一区二区三区不卡| 久久成人资源| 国产 国语对白 露脸| 成人爽爽爽| 亚洲三级理论片| 亚洲精品福利视频| 精品成人无码久久久久久| 91麻豆成人| 91精品国产自产在线观看| 国产精品jizz| 久久亚洲综合| aaa级片| www一区二区三区| 国产视频一区二区三区在线播放| www.亚洲在线| 五月婷婷天| 天天操夜夜骑| 国产911视频| 中文字幕精品一区二区三区精品| 天堂色播| 成人动漫亚洲| 欧美黑丝少妇| 亚洲女成人图区| 国产欧美日韩在线视频| 亚洲精品鲁一鲁一区二区三区| mm视频在线观看| 欧美高清一区| 久久成人资源| www.av视频在线观看| 女生免费视频| 香蕉视频网页| 成人黄色免费网站| 女人逼视频| 伊人自拍| 99精品免费在线| 日韩另类在线| 国产精品v欧美精品v日韩精品| 欧美少妇诱惑| 真实乱偷全部视频| 久久久噜噜噜久久中文字幕色伊伊 | 日韩欧美在线不卡| 亚洲国产成人av| 91国模| 国内精品偷拍| 插插宗合网| 91黄色免费看| 琪琪色视频| 亚洲精品xxx| 午夜影院一区| 免费看的毛片| 国产精品九九九| 午夜激情欧美| 一级毛片黄色| 九九视频免费| 少妇久久久| 国色天香av| 久热国产精品| 欧美全黄| 香蕉视频二区| 在线观看免费视频国产| 欧美精品性视频| 可以免费看av| 日韩伦理av| 女同二区| 欧美精品xxxxbbbb| 女生脱裤子让男生捅| 国产原创视频在线观看| 一本综合色| 日韩精品2| 三级第一页| 福利在线免费| 日韩黄色在线播放| 欧美日三区| 久久久久97| 日韩片在线| 日韩理论片在线| www.好了av| 欧美日韩在线精品一区二区三区 | 日本理伦片午夜理伦片| 日本在线看| 亚洲国产精品视频一区| 鲁死你资源站| 免费吃奶摸下激烈视频| 欧美性网址| 午夜整容室| 国产一级淫| 国产视频一二| 综合色婷婷一区二区亚洲欧美国产| 亚洲成人播放| 国产精品视频一区二区三区不卡| 看一级大片| 蜜桃aaa| 亚洲一级网| 亚洲小说在线| 91碰在线视频| 日韩精品欧美精品| 欧美全黄| 在线视频这里只有精品| 亚洲视频一| 日本久久一区二区| 青娱乐99| 天天射网站| 三级第一页| 伊人网视频在线观看| 高h文在线| 深夜福利免费在线观看| 黄色av网站在线看| 97影院| 亚洲精品欧美日韩| 亚洲色图清纯唯美| 第一页国产| 亚洲国产成人在线观看| 精品99久久久久久| 在线观看av日韩| 久久精品导航| 91在线中文字幕| 国产伦理久久久| 欧美少妇诱惑| tube国产麻豆| 亚洲色欲综合一区二区三区| 亚洲天堂区| 美女扒开屁股让男人桶| a级片网址| 国产欧美视频一区二区三区| 国产一二三| 18岁禁黄网站| 亚洲国产va| 亚洲天堂中文字幕| 成人av软件| 欧美老肥妇做.爰bbww视频| 操操网站| 免费看av网| 好色婷婷| 91视频三区| 99精品无码一区二区| 欧美 日韩精品| 久久久久久久久久久久久久久久久久久久 | 国产精品网站免费| 免费一区二区在线观看| 亚州av图片| 大地资源中文在线观看免费版| 国产男女猛烈无遮挡免费视频| 人人狠狠综合久久亚洲| 337p粉嫩大胆噜噜噜噜69影视| 麻豆精品视频在线| 亚欧激情| 岛国a视频| 欧美a在线观看| 精品久久国| 秋霞久久久| 好吊视频一区二区| 女人洗澡一级特黄毛片| 最新av在线播放| 亚洲伦理在线| 丝袜在线视频| 欧美成人自拍视频| 国产成人一级片| 绿帽贡献娇妻一二三区| 日本一区二区三区爆乳| 久久天堂影院| 天天操精品| 久久久精品波多野结衣av| 黄色小网站在线观看| 日本精品视频在线播放| 91老师片黄在线观看| 国产精品九九九| 精品一区二区三区在线播放| 99视频久久| 青草久久伊人| 97se在线| 1000部国产精品成人观看| 理论片大全免费理伦片| 2020国产在线| 一区二区日韩欧美| www.色视频| 蜜臀aⅴ免费一区二区| 任我爽在线| 久久国产视频播放| 九九久久久久| 91老司机在线| 久久密| 麻豆av毛片| www插插插无码免费视频网站| 玖玖国产| 日本69少妇| 欧美一级啪啪| 国产精品免费看| 国产精品夜夜爽张柏芝| 欧美天天性影院| 欧美专区在线播放| 久久av影视| 91蜜桃臀久久一区二区| 天天操天天操天天干| 成人精品水蜜桃| 人妻天天爽夜夜爽一区二区三区| 日韩三级电影视频| 日日夜夜爱| 欧美性猛xxx| 亚洲精品av在线播放| 阿v天堂2018| 天天草夜夜| 一区二区的视频| 亚洲国产二区| 毛片毛片毛片毛片毛片| 亚洲免费福利视频| av先锋影音| 泽村玲子av| 亚洲成av人片在www色猫咪| 国产黄色在线观看| 一区二区日韩欧美| 91九色蝌蚪国产| 全国男人的天堂天堂网| 国模少妇一区二区| 日本一二三不卡视频| 黑人黄色片| 亚洲一级电影| 欧美精品九九| 97精品视频在线| 亚洲激情中文| 国产一区,二区| 无码人妻精品一区二区三区不卡| 毛片网站免费在线观看| 自拍第一页| 黄色免费片| 男人j插女人p| 成人午夜短视频| 丰满人妻一区二区三区免费| 三区精品视频| 午夜av网站| 夜夜爽av福利精品导航| 成人午夜免费视频| 国产一区精品久久| 国内免费av| 啪啪网站视频| 久久综合热| 韩国黄色av| 久久精品伊人| 成人福利社| 少妇太爽了在线观看| 狠狠噜天天噜日日噜| 丰满人妻一区二区| 小污女导航| 午夜影视福利| 国产在线xxxx| 男人午夜网| 欧美夜夜| 成年人黄色片| 天天色网站| 一道本久久| av最新天| 人妻换人妻a片爽麻豆| 欧美日韩激情视频在线观看| 好爽毛片| 777国产成人入口| 国产乱大交| 日韩精品一二三四区| 五月天国产精品| 欧美成人免费高清视频| 中文字幕一区二区三区四区| 日本在线看| 国模在线观看| 亚洲综合国产| 国产精品大全| 中文字幕中文字幕一区| 最新中文字幕在线观看| 九九热这里有精品视频| 男人和女人日b视频| 2022天天操| 欧美区在线| 久久99精品久久只有精品| 深夜福利1000| 国产精品久久久久久久免费看| 女同二区| 成年女人色毛片| 久久久久中文| av影视网| 激情中文字幕| 中文字幕一区二区三区四区视频| 成人特级毛片| 欧美成年视频| 亚洲国产999| 日本bbwbbw| 久久综合久久综合久久综合| 97精品视频在线| 中文一区视频| 毛片久久久| 日韩欧美在线不卡| 免费激情视频网站| av无遮挡| 看了下面会湿的视频| 亚洲射色| 久久成人高清| 免费观看毛片| 美女mm131爽爽爽| 亚洲免费福利视频| 麻豆免费在线观看| 黄色网av| 西西人体做爰大胆gogo| 哪里可以看黄色片| 天堂在线v| 成人网在线播放| 青青草手机视频| 波多野结衣视频网址| 伊是香蕉大人久久| 亚洲国产精品99| 亚洲图片小说区| 亚洲精品av在线播放| 澳门免费av| 蜜桃av免费| 男人懂得网站| av黄色在线| 日本一区二区在线播放| www国产精品| 欧美男人亚洲天堂| 伊人网在线| 黄色小视频国产| 免费一级片网站| 福利电影一区| 亚洲成人av电影| 国产精品一区二区网站| 国产xx视频| 亚洲涩情| 黄色av免费看| 91色中文| 美女靠逼app| 天海翼一区| 国产日产精品一区| 少妇高潮av| 重口另类| 久久午夜福利电影| 男生插女生的视频| 日韩av在线看免费观看| 国产福利视频在线| 国产精品成人Av| 姝姝窝人体www聚色窝| 成人av影院| 国内视频一区| 国产精品二区一区二区aⅴ污介绍| 免费播放黄色片| 青青草97国产精品麻豆| 第一页国产| 欧美v日韩| 国产乡下妇女做爰| 国产suv精品一区二区| 成人毛片一区二区三区| 少妇一级免费| 成年人理论片| 香港av电影| 黄色成人免费网站| 丰满岳妇伦在线播放| 97操操| 快射视频网| 日韩色网址| 西西美女人体| 天堂av2020| 欧美国产一区二区在线观看| 国产区一区二区| 人妻天天爽夜夜爽一区二区三区| 国产精品二区一区二区aⅴ污介绍 精品国产乱码久久久久久久软件 欧美丰满熟妇bbbbbb百度 | www奇米影视com| 成人在线影片| 91在线色| 不卡视频在线| 欧洲美女与动交ccoo| 暖暖av在线| 激情综合小说| 国产sm调教视频| 国产95在线| 国产综合精品视频| 国产素人av| 在线中文字幕不卡| 公妇公侵无伦中文字幕| 久久精品91| 99色99| 日韩高清精品免费观看| 中文字幕25页| 精品女同一区| 欧美喷潮久久久xxxxx| 在线高清观看免费观看| 日韩精品2| 亚洲va中文字幕| 操比网站| 天天综合干| 99精品欧美一区二区三区综合在线 | 天天色天天操天天| 最新地址av| 不卡国产视频| 国产黄网站| 韩国女主播一区| 在线观看视频www| 豆花av在线| 欧美一区二区高清| 久久精品伊人| 激情图片区| 日本bbwbbw| 欧美一级色| 永久免费观看av| 天天免费视频| 在线观看福利网站| 天天国产视频| 雪花飘电影中文高清| 日本a级无毛| 欧美性生活网| 一级黄色大片在线观看| av福利站| 久在草在线| 性欧美激情| 日本精品视频在线播放| 欧美a视频| 天天干女人| 欧美三级在线观看视频| 天堂√中文最新版在线| 欧美12--15处交性娇小| 一区二区三区精彩视频| 日韩啪啪网站| 国产色无码精品视频国产| 国产一区二区三区网站| 欧美视频自拍偷拍| 国产在线999| 1级黄色片| 成人性色av| 色六月婷婷| 欧美区在线| 欧美激情欧美狂野欧美精品| 亚洲1级片| 欧日韩一区二区三区| 丰满熟妇肥白一区二区在线| 国产日日干| 免费成人视屏| 无码人妻少妇色欲av一区二区| 一级福利视频| 老太太的镖客在线观看播放| 国产夜色精品一区二区av| 在线观看的av| 国产一区二区在线播放视频| 国产夫妻性生活视频| 午夜视频入口| 久久人人干| 黄色九九| 亚洲国产精彩视频| 国产精品热久久| 久热这里有精品| 欧美拍拍| 日本免费一二区| 黄色免费一级片| 伊人网av在线| 污视频在线观看网站| 白浆导航| 鲁丝一区| av地址在线观看| a v视频在线播放| 一本久道久久综合狠狠爱| 日韩和一区二区| 成人在线你懂的| 成人精品一区二区三区电影| 久久精品tv| 免费观看全黄做爰的视频| av国产成人| 在线黄色网| 亚洲一区二区三区电影| 午夜看片| 大地资源中文在线观看免费版| 日本v视频| 亚洲午夜无码毛片av久久京东热| 国产精一区二区三区| 天天狠天天插| www.激情.com| 国产精品色在线| 亚洲一本视频| 国产深夜视频| 亚洲在线一区| 网站免费在线观看| 男人久久| 男人的天堂久久久| 国产人妖在线视频| 男人和女人操操| 久久99色| 国产精品国产三级国产专区52| 最新地址av| 性做久久久| 国产欧美日韩另类| 可以免费看av| a级片网址| 成人免费毛片高清视频| 久久久久久免费毛片精品| 亚洲激情一区| 欧亚av在线| 日日夜夜爱| 亚洲精品高清视频| 精品少妇白浆小泬60P| 日本男人的天堂| 另类ts人妖一区二区三区| 国产麻豆一区二区三区在线观看| 亚洲国产成人av| 国产精品无码成人片| 老妇荒淫牲艳史| 国产一级片免费播放| 最好看的mv中文字幕国语电影| 欧美亚洲大片| 午夜伦理剧场| 国产成人二区| 国产区一区二区| 日本精品专区| 91碰在线视频| 日本不卡一区在线| 看av网| 久久久精品视频在线观看| 日本少妇与黑人| 亚洲精品少妇| 久久综合加勒比| 亚洲欧美大片| 免费黄色91| 国产一区二区三区18| 久久视频热| 亚洲一区二区三区婷婷| www.com毛片| 亚洲精品不卡在线| 日韩女优在线| 日本伊人色综合网| 婷婷丁香在线| 精品国产一区二区三区性色av| 国产欧美一区二区精品性色超碰| 美国av大片| 久色在线| 色六月丁香| 亚洲私人网站| 免费黄在线| 北岛玲av在线| 欧美成人aaa| 枫花恋在线观看| 色一情一乱一乱一区91av| 亚洲国产精品视频一区| 四虎在线免费观看| 黄色一区二区视频| 国产精品国产三级国产专区51| 91美女片黄在线| 在线观看av日韩| 欧美成人一区二区视频| 胖女人毛片| 性xxxx| 激情涩涩| 久久经典| 国产又粗又猛又爽又黄91| 精品国产成人一区二区| 免费观看av毛片| 精品999视频| 国产精品夜夜爽张柏芝| 一级久久久| 青青草97国产精品麻豆| 欧美黄色大全| 另类ts人妖一区二区三区| 亚洲视频免费观看| 久久成人小视频| 东京热毛片| 禁网站在线观看免费视频| a久久久久| 欧美久久久一区| 涩涩爱影院| 97天天操| 午夜777| 久久av一区二区| 久久午夜福利电影| 五月天免费网站| 久久99综合| 天天操天天操天天干| 亚洲精品乱码久久久久久日本蜜臀| 国产一二视频| 国产又粗又长又黄视频| 欧美做爰爽爽爽爽爽爽| 污黄视频在线观看| 无码人妻精品一区二区三区不卡| 一级黄色小视频| 黄色国产一区| 丝袜av网站| 蜜桃91麻豆精品一二三区| 91黄图| 狠狠爱五月婷婷| 欧美xxxⅹ性欧美大片| 九色福利| 日韩午夜剧场| 黄色网页在线观看| 久久99伊人| 国产区一区二区| 婷婷影视| 亚洲不卡中文字幕无码| 性少妇无码播放| 3d成人动漫在线观看| 91搞搞| 国产精品久久久久久久久免费桃花| 美女穴穴| 熟女人妻一区二区三区免费看| 亚洲国产精品福利| 中文字幕人妻一区二区三区视频| 97超碰在线播放| 中文字幕1区| 欧美区在线| 欧美日本一区二区| 综合色区| 青青草视频在线看| 成人精品在线观看视频| 黄瓜视频色| 成人私密视频| 国产福利视频在线| 欧美人xxx| 国产深夜视频| 99色国产| 日韩av成人| 手机福利视频| 四虎精品在线观看| 污污的视频软件| 桃色网站在线观看| 加勒比一区二区三区| av在线一区二区三区| 午夜看片| 成人拍拍拍| 久久精品91| 欧美性一二三区| 婷婷丁香综合网| 日批免费网站| 日本激情视频网站| 日本va欧美va欧美va精品| 毛片自拍| 午夜视频国产| 91av免费| 一女二男一黄一片| 亚洲人成色77777| 特黄网站| 裸体美女免费视频网站| 成人午夜短视频| 亚洲黄色免费视频| 黄色一级片.| 色噜噜狠狠狠综合曰曰曰| 吻胸摸激情床激烈视频| 日本亚洲黄色| 91福利视频网| 欧美一级大黄| 国产又色又爽又高潮免费| 白虎av在线| 欧美成人免费高清视频| 午夜影院一区| 美日韩在线视频| 亚欧免费无码aⅴ在线观看| 欧洲黄色录像| 纯爱无遮挡h肉动漫在线播放| 狠狠干网| 美女av免费在线观看| 夜夜操夜夜摸| 国产精品久久久久久久成人午夜| 3d成人动漫在线观看| 欧美骚少妇| 中文字幕一区二区三区四区视频| 水蜜桃一区二区三区| 一区二区乱码| 亚洲一级片网站| www.日韩av.com| 欧美激情视频二区| 岛国av大片| 第一福利网av| 三级黄色短视频| 国产91清纯白嫩初高中在线观看 | 影音先锋男人天堂| 国产精品 欧美精品| 秋霞影院午夜老牛影院| 精品999视频| 国产裸体无遮挡网站| 欧美精品aa| 天堂视频免费看| 西西人体www大胆高清| 中文字幕一级| 九九国产视频| 日本韩国一区二区三区| 色人阁视频| 色综合人人| 亚洲短视频| 桃色网站在线观看| 亚洲高清福利视频| 国产va在线观看| 触手动漫| 五月天色小说| 日韩伦理一区二区| a天堂av| 91超碰免费在线| 姝姝窝人体www聚色窝| 久久精品国产亚洲av麻豆| 顶级尤物极品女神福利视频| 精品国产乱码久久久久久久软件| www.亚洲免费| 国产a一区二区| 欧美日韩另类在线| 成年人免费在线观看网站| 一级在线| sleepless动漫在线播放免费观看| 国产黄色在线看| 亚洲成人a v| 久久黄视频| 午夜激情亚洲| 激情综合网五月| 麻豆午夜视频| 91精品久久久久久久99蜜桃| 日韩另类在线| 涩涩的视频网站| 亚洲乱码无码永久不卡在线| 另类ts人妖一区二区三区| 人妻精品久久久久中文字幕| 欧美少妇诱惑| 国产成人91精品| 精品一区二区三区免费毛片| 成人免费黄色网址| 96免费视频| 二区视频在线| 在线视频欧美亚洲| 日韩在线观看免费| 国产激情成人| 少妇无码吹潮| 老头吃奶性行交| 亚洲最新中文字幕| 国产高清在线精品一区二区三区 | 91福利视频网| 精品福利视频导航| 国产性猛交xxxx免费看久久| 久久精品tv| 国产日日干| 老女人裸体视频| 欧美熟妇精品黑人巨大一二三区| 亚洲精品黄色片| 国产裸体av| 日韩69| 天天操天天干天天| 免费av资源在线观看| 欧美性猛交xxxx乱大交| 国产在线丝袜| 正在播放国产一区| 伊人久久大香线蕉综合75| 亚洲一区在线观| 一级黄色短片| 久久特级毛片| 成人av手机在线| 成人免费看片98| 亚洲国产精品视频一区| 午夜看片在线观看| 亚洲天堂一区在线观看| 亚州av网| 亚洲精品免费在线观看视频| 91草莓| 韩国成人三级| 婷婷丁香五| 日本欧美一区二区三区不卡视频 | 国产又粗又黄又爽又硬的视频| 亚洲av无码一区东京热久久| a级片免费| 午夜免费福利影院| 视频一区 日韩| 国产深夜视频| 欧美性爱精品一区| 天天干天天要| 欧美亚洲综合网| 国产原创视频在线观看| 岛国精品资源网站| 91麻豆成人| 18岁禁黄网站| 国产在线999| 欧美成人一区二区| 午夜秋霞| 国产一区二区黄色| 三上悠亚痴汉电车| 国产成人aⅴ| 午夜成年视频| 精品国产亚洲一区二区麻豆| 亚洲无限观看| 欧美日韩123区| 国产色片在线观看| 少妇系列在线观看| av黄色影院| 精品国产亚洲一区二区麻豆| 泽村玲子av| 老头吃奶性行交| 久久久久久久福利| 欧美日韩在线精品一区二区三区 | 黄色一级片一级片| 丰满人妻熟妇乱偷人无码| 宅男天堂网| 日本大胆裸体做爰视频| 精品视频一区二区三区在线观看| 电影午夜精品一区二区三区| 成人欧美一区二区三区黑人动态图| 三级4级全黄60分钟| 在线观看国产日韩| 丝袜美腿一区二区三区| 国产精品夜夜夜爽张柏芝| 亚洲一本视频| 一级特黄aaa| 北条麻妃一区二区三区| 体内精69xxxxxx| 国模在线观看| 日批视频免费播放| 亚州av综合色区无码一区| 浪浪视频在线观看| 色噜噜狠狠狠综合曰曰曰| 第一av| 日韩视频中文| 欧美成人一区二区| 国产又粗又黄又爽视频| 天堂中文资源在线| 日韩黄色短片| 一区二区国产电影| 777国产成人入口| 日本黄色免费看| 国产性在线| 成人一级影片| 天天操天天曰| a级片在线视频| 日韩av中字| 在线观看av日韩| 香蕉成视频人app下载安装| 成人网av| 黄色片中文字幕| 久久国产视频一区| 日本污污网站| 一女二男一黄一片| 国产网站91| hd极品free性xxx护士| 蜜桃免费网站| 51精产品一区一区三区| 美女啪啪网| 日韩成人一级片| 天天操精品| 成人app在线| 亚洲自拍第三页| 2021亚洲天堂| 国产精品羞羞答答在线观看| 亚洲精品在线不卡| 国产黄网站| 性色av蜜臀av浪潮av老女人| 国产精选自拍| 夫妻性生活黄色大片| 午夜草草| 久久亚洲AV成人无码一二三| 涩涩小黄文| 在线免费黄| 狠狠干夜夜爽| 久久理伦| 欧美恋足| 欧美激情欧美狂野欧美精品| 老色批永久免费网站www| 污污网站在线播放| 四虎在线免费观看| 欧美日韩一级二级| 欧美高清视频一区二区三区 | 自拍偷拍欧美日韩| 国产精品一区二区久久精品爱涩| 天天操狠狠操夜夜操| 国产欧美一区二区精品性| 久色视频| 国产一区二区三区| 国产视频一区二区三区在线播放| 在线观看一区视频| 久久成人一区二区三区| 免费特级毛片| 五福凹凸影院| 小污女导航| 精品国产一区二区三区性色av| 日日夜夜狠| 日韩成人一级片| 亚洲一级片| 欧美性生交xxxxx久久久| 国产免费观看高清在线观看| 亚洲免费福利视频| 国产色资源| 欧美性猛交ⅹ乱大交3| 成人三级在线视频| 爽娇妻快高h视频| 黄网站免费观看| 国产片一区二区| 亚洲草逼| 亚洲AV成人无码久久精品同性| 黄瓜视频在线观看| 黄瓜视频色| 四虎影视成人永久免费观看视频 | 亚洲av无码一区二区乱孑伦as| 性欧美free| 日本高潮视频| 日韩综合另类| 久久成人在线视频| 国产一级视频免费观看| 国产欧美在线观看视频| 久草精品视频| 乱码丰满人妻一二三区| 久久99伊人| 日韩精品久久久久久久玫瑰园| 少妇激情一区二区三区| 五月天六月婷| 精品久久久久久久久久久国产字幕| 欧美成人三级在线播放| 国产福利在线看| 欧美精品电影一区二区| 女生免费视频| 亚洲一区欧洲二区| 奇米成人网| 成人18夜夜网深夜福利网| 欧美高清69hd| 天堂网视频在线观看| 爱情岛论坛亚洲品质自拍| 国产地址一| 久久久精品91| 日本a级免费| 亚洲成人资源网| 91国产高清| 欧美综合第一页| 日韩精品免费一区二区夜夜嗨| 欧美a在线播放| 久久久久久九九九九| 亚洲成人性视频| 18av视频| 美女考逼| 久久视频热| 李丽珍毛片| 免费黄色91| 日韩一级在线播放| 欧美日韩在线不卡| 69成人网| 日韩人妻无码精品综合区| 国产精品传媒麻豆hd| 97在线免费公开视频| 欧美 日韩 国产 精品| 美女穴穴| 精一区二区| 日本xxxx裸体xxxx出水| 国产麻花豆剧传媒精品mv在线| 亚洲中文字幕在线观看| 国产一区二区三区在线视频观看| 一本色道久久88综合日韩精品| 人人澡视频| 国产精品视频网址| 亚洲国产va| 91高清免费观看| 奇米二区| 波多野结衣视频网站| 四虎精品永久在线| 蜜桃免费视频| 欧美激情爱爱| 看黄免费| 一区二区三区av电影| 极品在线观看| 特黄网站| 特一级黄色片| 久久视频在线视频| 国产对白刺激视频| 国产色在线| 草草久久久| 雷电将军和丘丘人繁衍后代视频 | 亚洲你懂得| 可以在线观看的av网站| 国产一级片免费播放| 电影午夜精品一区二区三区| 日本中文字幕视频| 国产在线丝袜| 欧美精品九九| 伊人春色视频| 老头把女人躁得呻吟| 狠狠综合网| www.久久99| 免费成人深夜夜行网站视频| 图书馆的女友在线观看| 久久精品69| 日韩不卡一二区| 欧美在线视频你懂的| 成人一级片在线观看 | 国产欧美一区二区三区另类精品| 69av视频在线观看| 国产一区二区电影在线观看| 免费看av软件| 九九久久久久| 看片在线| 自拍偷拍视频网| 日韩综合另类| 黄色毛毛片| 桃色av网站| 久青草资源福利视频| 久久久久久无码精品大片| √天堂中文官网8在线| 91亚色视频| 免费v片在线观看| 99精品无码一区二区| 嫩草免费视频| 69成人网| 不卡视频一区二区三区| 久久久国产精品免费| 成人在线网站| 亚洲精品视频网址| 婷婷导航| 51精产品一区一区三区| 天天干天天插天天射| 精品成人免费一区二区在线播放| 亚洲色图21p| 日韩av在线精品| 国产夫妻性生活视频| 91九色蝌蚪国产| 免费日本高清| 成人三级在线视频| 色人阁在线视频| 在线免费观看视频一区| 在线黄色av网站| 18p在线观看| 色欲av永久无码精品无码蜜桃| 亚洲黄色精品| 国产精品福利在线看| 日本黄色免费| 最新在线中文字幕| 午夜粉色视频| 欧洲做受高潮免费看| 精品在线视频一区二区三区| 性高潮视频在线观看| 操操综合网| 欧美大胆a| 岛国av免费看| 黄色av网站在线看| 琪琪色视频| 四虎成人在线观看| 国产网址在线| 中文字幕无码乱人伦| 男女私大尺度视频| 蜜桃一区二区三区四区| 夜间福利网站| 91网站视频在线观看| 手机av免费在线| 欧美性bbw| 污黄视频在线观看| 日本中文在线播放| 男生尿隔着内裤呲出来视频 | 91免费在线看| 黄色视屏在线| 日韩人妻一区二区三区| 欧美国产免费| a久久久久| 免费在线成人av| 麻豆精品99| 国产69精品久久久久久久久久| 新视讯影视官网入口| 国产一区,二区| www.色悠悠| 久久99精品久久只有精品| 成人18夜夜网深夜福利网| 久久av.com| 爱插美女网| 在线日韩精品视频| 亚洲国产一二三区| 狠狠撸狠狠操| 亚洲精品1| 97超碰在线播放| 九九福利视频| 亚洲自拍在线观看| 99精品免费在线| 久久蜜臀av| 免费淫片| 有码av| 色综合.com| 午夜精品一区二区在线观看| 午夜老湿机| 草久在线| 污视频在线观看网站| 久章草在线观看| 天堂av在线免费| 免费一区| 九色91视频| 美国爱爱视频| 亚洲自拍在线观看| 麻豆国产在线| 婷婷激情视频| 日韩avxxx| 美女又爽又黄免费网站直播| 露出调教羞耻91九色| 国产精品久久久久久久成人午夜| 欧美福利一区| 亚洲成在线| 黑人日批视频| 一二三四视频社区在线| 蜜臀人妻四季av一区二区不卡| 亚洲自拍成人| 国产a一区二区| 欧美日本激情| 日韩在线观看免费| 欧美青青草| 国产精品成久久久久三级| 九九综合九九| 国产porn在线| 中文字幕av网站| 美国女人毛片| 色狠狠久久av五月综合| 西西人体做爰大胆gogo| 欧美极品少妇xxxxx| 中文字幕av高清片| 国产呦| 专业操老外| 久久亚洲综合色| 青青草华人在线| 黑人日批视频| 做暧暧视频在线观看| 天堂视频免费看| 极品久久久久久| 一区二区自拍| 久久伦理网| 蜜臀av88| 亚洲国产精品av| 国产精品第100页| 久久99综合| 性xxxx欧美| 久久综合色综合| 丰满熟妇肥白一区二区在线| 男人爽女人下面动态图| 亚洲精品国产片| 高清一区二区三区视频| 自拍第二页| 91麻豆免费视频| 欧美饥渴熟妇高潮喷水水| 日韩欧美一区视频| 黄色网页在线观看| 一级大片黄色| 欧美经典一区| 日韩成人在线免费视频| 日本不卡一区在线| 爆操白丝美女| 五月婷婷天| 四色激情| 国产高清黄色| 四虎新网站| 91社区视频在线观看| 老妇荒淫牲艳史| 麻豆传媒网| 亚洲黄色在线播放| 第一福利网址导航| 成年人视频网站| www.四虎com| 超碰久久在线| 欧美亚洲国产日韩| 亚洲天堂五月| 日韩有色| 美国爱爱视频| 欧美极品一区| 国产性猛交| 中文字幕免费看| 国产美女福利视频| 精品少妇一区二区三区在线观看| 日韩中文在线观看| 99精品影视| 亚洲国产精品久久久| 97超碰资源总站| 欧美视频在线免费看| 人人妻人人添人人爽欧美一区| 综合久久综合| 欧美v亚洲| 色呦呦视频| 人妻换人妻a片爽麻豆| 国产视频在线观看网站| 97公开视频| 五月婷婷天堂| 黄色一级片在线看| 亚洲成人免费av| 国产区二区| 亚洲欧洲国产精品| 人人干人人插| 天天操天天操天天干| 网站一级片| 色偷偷影院| 成人在线免费视频播放| 人人干人人插| 亚洲乱亚洲| 在线一区二区三区视频| 另类ts人妖一区二区三区| 久久av一区二区| 欧美操操操| 日干夜操| 成人欧美一区二区三区黑人免费| 香港三级韩国三级日本三级| 欧美最顶级丰满的aⅴ艳星| av激情片| 黄色片99| 手机看片1024欧美| 久久久久精| 国产麻豆一精品一av一免费| 欧美人xxx| 在线观看入口| 亚洲第一区在线| 校园春色 亚洲色图| 中文精品视频| 日本高清在线播放| 少妇一级淫片免费放2| 欧美国产一区二区三区| 中字幕视频在线永久在线观看免费| 欧美成人一二区| 精品在线免费视频| 亚洲三级在线免费观看| 少妇2做爰交换朴银狐| 青青超碰| 午夜特片网| 成人黄色网| 黄色视屏软件| 成人免费观看视频| 成人77777| 欧美一级在线观看视频| 黄色大片日本| 橹图极品美女无圣光| 国产精品25p| 日本三级理论片| 国产一级片免费播放| 深夜精品视频| 邻居的诱惑漫画| 国产九九精品视频| 日本少妇与黑人| 五月天777| 天美av电影| 国产片一区二区| 韩国日本中文字幕| 特级西西444www高清大视频| 国产成人在线电影| 日韩一区二区三区免费视频| 嫩草懂你的影院| 男人操女人的免费视频| 国产片久久| 日韩欧美日本| 久久久久久国产精品免费免费| 日韩中文字幕在线一区| 全国男人的天堂天堂网| 无码播放一区二区三区| 成人a级| 新3d金梅龚玥菲| 伊人网网站| 99小视频| 日韩理论片在线| 快播黄色电影| 久草精品视频| 玖玖爱免费视频| 永久久久久久久| 公妇公侵无伦中文字幕| 涩人阁| 天天射天天搞| 国产不卡免费视频| 国产污污在线观看| 久久依依| 欧美成人精品一区二区男人小说 | 一区二区不卡在线| 久久免费毛片| 美女av免费看| 美女靠逼app| 亚洲人在线播放| 日韩精品一二| 欧洲成人免费| 深夜天堂| 国产一极片| 黑人巨大猛烈捣出白浆| www国产| 色婷婷婷| 91精品成人| 性欧美激情| 网红日批视频| 天天干天天舔| 欧美操穴视频| 中文字幕免费看| 特级西西444www高清大视频| 成人午夜电影网| 日本xxxx裸体xxxx出水| 久久久久一区| 伊人影视久久| 九久久久久| 外国视频网站| 色日本视频| 亚洲一区二区三区婷婷| 东京干导航| 无码人妻h动漫| 人人妻人人添人人爽欧美一区| 91精品产国品一二三产区| 亚洲天堂中文字幕| 免费日韩av片| 你懂的网站在线观看| 黄色免费在线网址| 白浆导航| 久久国产精品免费视频| 91在线一区二区三区| 91入囗| 97福利影院| 夜夜精品一区二区无码| 免费日韩av电影| 婷婷精品视频| 中文字幕亚洲第一| 免费观看h片| 亚洲制服一区| 91免费试看| 亚洲婷婷小说| av片在线观看网站| 欧美激情视频二区| 岬奈奈美在线观看| 最近中文字幕在线视频| 成人免费超碰| 欧美视频精品在线观看| 性欧美激情| 99re视频| 岬奈奈美在线观看| 成年人视频在线| 天堂中文资源在线| 一区二区网| 手机在线免费看av| 69久久久久| 伊人资源| 国产精品无码一区| 91久久综合| 2022国产精品| 久久成人一区二区三区| 久久成人在线视频| 免费人成网| 久久久无码精品亚洲无少妇| 欧美性猛交ⅹ乱大交3| 亚洲第一国产视频| 91丨porny丨九色| 欧美亚洲大片| 夜间福利视频| 成人拍拍拍| 五月婷婷六月色| 婷婷精品视频| 久久福利国产| 超碰在线国产| 日韩性色| 欧美黑丝少妇| a级片国产| 中文字幕乱码在线人视频| 欧美性网址| 国产第三区| av免费网址| av大片网址| 三级黄色片网站| 小萝莉末成年一区二区| 精品国产亚洲一区二区麻豆| 另类视频在线观看+1080p| 亚洲一区二区在线视频观看| 日本作爱视频| 欧美日韩国产成人精品| 黄色av网站免费观看| 一区二区三区高清| 日本三级播放| 色眯眯av| 18我禁在线观看| 中文字幕av高清片| 久章草在线观看| 国产视频在线免费观看| 欧美三级在线观看视频| 国产精品-色哟哟| 香蕉视频一区| 伊人自拍视频| 人人澡人人添| 国内自拍xxxx18| 色妞综合| 国产福利电影| 在线观看视频www| 欧美成人一区二区在线| 涩涩涩999| 插插宗合网| 美女无遮挡网站| 亚洲人在线播放| 成年人在线视频网站| 日本美女黄视频| 日本韩国一区二区三区| 男女激情久久| 麻豆视频国产精品| 国产美女引诱水电工| 探花国产| 在线观看国产亚洲| 亚洲欧洲av| 五月婷婷天堂| 在线播放日韩| 午夜免费福利影院| 国产视频一二| 杨幂国产精品一区二区| 日韩综合av| 色婷婷亚洲综合| 久久性爱视频网站| 色妞综合| 免费午夜av| 黄色录像a级片| 99视频精品免费| 网红日批视频| 婷婷影视| 色综合久久久久久久久五月 | 午夜精品剧场| 在线视频观看一区| 男男在线观看| 欧洲美女与动交ccoo| 嫩草在线看| 欧美影视一区| 啪啪免费网| 重囗味另类老妇506070| 日韩精品中文在线| 精品一区二区中文字幕| 性欧美4khd高清极品| 成人国产在线观看| 欧美成人精品一区二区免费看片| 欧洲精品视频在线播放| av一二三四区| 国产精品果冻传媒| 一级在线看| 超碰精品| 国产精品亚洲五月天丁香| 91导航| 成人欧美一区二区三区黑人免费| 无遮挡毛片| www色网| 中文字幕91| www五月婷婷| 91av免费| 久久国产精品免费视频| 国产精品熟妇人妻g奶一区| 最好看的2018中文中国话视频| 国产一极片| 午夜整容室| 亚洲黄色小视频| 自由成熟xxxx色视频| 枫花恋在线观看| 殴美一级视频| 91一区| 国产色a在线观看| 欧美激情欧美狂野欧美精品 | 女女同性女同一区二区三区按摩| 男人天堂成人| 亚欧三级| 超碰精品| 亚洲欧美色图小说| av动漫网站| 久久久一二三| aaaaa毛片| 和朋友一起三p娇妻| 亚洲在线观看视频网站| 久操综合| 大陆一级黄色片| 欧洲性生活视频| 男女免费看| 中文字幕在线视频免费观看| 久久香蕉精品视频| 久久午夜无码鲁丝片| 亚洲精品视频免费观看| 91导航| 国产精品免费一区二区三区在线观看| 亚洲第七页| 国产精品一二三区| 亚洲天堂avav| 99国产在线播放| 91操人| 国产黄视频在线观看| 欧美女优一区二区| 91成年人网站| 国产亚洲精品久久久久丝瓜| 91精品久久久久久久99蜜桃 | 97久久精品人人澡人人爽| 免费观看毛片| 东北少妇不带套对白| 香蕉视频ios| 亚洲欧美在线另类| 中文字幕一区二区三区人妻| 国产精品6666| 免费淫片| 日韩精品一区二区三区中文在线| 伊人福利视频| 午夜桃色| 天天在线综合| gai免费观看网站| 超碰在线进入| 老牛影视av老牛影视av| 超碰91在线观看| 国产精品一线天粉嫩av| 91久久爽久久爽爽久久片| 不卡国产视频| 桃色av网站| 泽村玲子av| 青青草国产一区二区三区| 2022天天操| 国产视频欧美| 精品三级在线| 日韩欧美三区| 欧美成年视频| 手机av观看| 爱爱爱网| 成年人在线视频网站| 日本天堂在线| 影音先锋二区| 久久人人爽av亚洲精品天堂| av一二三四区| 福利在线一区| 欧美日本韩国一区二区| 国产对白刺激视频| 冲田杏梨一区二区三区| 天天爽网站| www.777含羞草| 老色鬼av| 日韩亚洲精品中文字幕| 成人免费无遮挡无码黄漫视频| 午夜免费福利影院| 波多野结衣视频网址| 激情久久av| 9.1大片| 日本大胆裸体做爰视频| 一级黄色大片网站| 91久久爽久久爽爽久久片| 秋霞久久久| 欲色淫香| 久久伊人国产| 成人夜夜| 欧美黄片一区| 国产99热| 91视频国产免费| 欧美日韩色图| 最近中文字幕在线观看视频| 第一福利网址导航| 亚洲免费影院| 肉肉av福利一精品导航| 国产黄色小说| 中文一区视频| 狠狠狠狠干| 久久久久国产视频| 成人app在线| 蜜桃无码一区二区三区| 亚洲精品黄色片| 欧美性第一页| 五月婷视频| 狠狠操夜夜爽| 国产视频欧美| 欧美激情视频二区| 国产福利在线看| 白浆导航| 激情四射网站| 中文字幕免费看| 欧美在线视频你懂的| 国产精品字幕| 男人懂得网站| 日本精品一区在线| 国产破处av| 夜夜久| 色妞综合| 欧美精品电影一区二区| 久久精品66| 成人三级在线视频| 午夜av电影院| 青青草原在线免费观看视频| 亚洲国产一区二区三区| 四虎影视成人永久免费观看视频| 国产不卡视频在线| 影音先锋2020色资源网| 在线观看中文| 奇米网888| 野外性满足hd| 国产欧美三级| 先锋资源av网| 国产色a在线观看| 日韩高清精品免费观看| 成人欧美一区二区三区黑人免费| 男人天堂成人网| 亚洲天堂2018av| 亚洲精一区| 性淫影院| 中文字幕精品一区二区三区精品| 国产精品黄色片| 老熟妇毛茸茸| 96免费视频| 黄色视屏软件| 欧美亚洲国产日韩| 色婷婷色| 国内精品福利视频| 亚洲伦理一区二区| 香蕉视频色版| eeuss国产一区二区三区四区| 成人av网站在线| 午夜视频国产| 操夜夜操| 一级女毛片| 亚色综合| 黄色小网站在线观看| 国产淫| 高级毛片| 夜夜躁日日躁狠狠| 97久久人人超碰caoprom欧美| 活大器粗np高h一女多夫| 欧美在线观看一区二区| 精品人妻在线一区二区三区| 欧美v日韩| 手机看片1024欧美| 8x8ⅹ成人永久免费视频| 午夜日韩电影| 男人捅爽女人| 久草综合网| 成人欧美一区二区三区小说| 外国a级片| 久草精品视频| 老师的丰满大乳奶| 欧美专区一区| 欧美性猛交ⅹ乱大交3| 亚欧成人精品| 大尺度做爰无遮挡露器官| 美日韩在线视频| 99国产成人精品| 亚洲影视一区二区三区| 色婷婷婷| 九色福利| 日韩黄色短片| av一二三四| 中文字幕av网站| 日本视频免费看| 深夜福利老司机| 亚洲三区在线观看无套内射| 不卡中文字幕在线| 精品99久久久久久| 四虎精品| 免费日批视频| www五月婷婷| www.香蕉网| 在线观看日韩| 亚洲欧美第一页| 国产精品久久久无码一区| 免费黄色在线电影| 丝袜护士强制脚足取精| 久久亚洲黄色| 欧美久久久一区| 中文字幕区| 色天使av| 日韩欧美在线观看一区二区| 69亚洲| gai免费观看网站| 日本高清视频网站| 农村妇女av| 欧美黄色性生活| 欧美一区二区| 亚洲三级理论片| 日韩av网页| 三级第一页| 夜夜嗨网站| 波多野结衣视频网站| 亚洲天堂欧美| 日本中文字幕视频| 特一级黄色片| 成人9禁啪啪无遮挡免费漫画| 日本老熟妇乱| 天堂亚洲| 国内外成人在线视频| 尤物影院在线观看| 黄色免费在线网址| 色图自拍偷拍| www.好了av| 亚洲欧美一区二区三| 国产精品成人Av| 在线视频观看一区| 五月播播网| 天天干一干| 国产精品二区一区二区aⅴ污介绍 精品国产乱码久久久久久久软件 欧美丰满熟妇bbbbbb百度 | 黑人操白妞| 91人人草| 99热都是精品| 日本女人一级片| 午夜粉色视频| 国产精品996| 免费一区| 国产麻豆一区二区三区在线观看| 视频一区欧美| 久久久无码精品一区波多野结衣 | 男人天堂导航| 免费日韩视频| 亚洲欧美成人一区二区| 在线视频导航| 久久久www成人免费毛片麻豆| 黄色一级视频片| 最近中文字幕在线视频| 欧美精品性视频| 亚洲成人av电影| xxfree性黑人hd4k高清| 国产区一区二区| 天天爱天天操| 综合第一页| 91性视频| 成人欧美一区二区三区黑人免费| 超碰在线国产| 三级视频网址| 欧美一级大黄| 日日干夜夜干| av影视网| 99在线观看视频| 色图综合网| 高h视频在线免费观看| 亚洲成人a v| 深夜福利免费视频| 免费看一级视频| 爱插美女网| 亚洲视频导航| 欧美乱大交xxxxx潮喷l头像| www四虎精品视频免费网站| www.日日干| 亚洲影视一区二区三区 | 亚洲欧洲一区二区| 性欧美在线视频观看| 禁网站在线观看免费视频| 免费成人毛片| 快播黄色电影| 亚洲影视一区二区三区| 91av视频播放| 五月婷婷天堂| 欧美成人做爰猛烈床戏| 91福利视频网| 婷婷激情啪啪| 国产三极片| 亚洲免费福利视频| 国产欧美日韩视频| 亚洲妇女无套内射精| 欧美另类tv| 一区二区成人av| 推油少妇久久99久久99久久| 午夜伦理剧场| 亚洲欧美色图小说| 欧美人xxx| 91激情视频在线观看| 91秦先生在线播放| 亚洲激情网址| 亚洲国产精品99| av在线一区二区三区| 中文字幕欧美色图| 大胸美女网站| 国产精品果冻传媒| 亚洲小说在线| 欧美v亚洲| 国产伦精品一区二区三区妓女| 2020国产在线| av免费不卡| 性视频网址| 黄v网站| 欧美日韩高清一区二区三区| 亚洲第一免费播放区| 国产麻豆一级片| 免费毛片一区二区三区| 草逼视频网站| 日本美女黄视频| gogogo日本免费观看电视剧_第17集 | 色综合热| 国产综合精品视频| 91porny 九色| 免费在线看a| 国产精品18久久久久久无码| 日韩免费一区二区| 永久av在线| 黄色激情视频在线观看| av成人在线看| 亚色综合| 久久网中文字幕| 人妖一级片| 欧洲做受高潮免费看| 欧美乱强伦| 国产精品第100页| 香蕉av网站| 黄色视屏在线| 免费看的av| 第一av| 超级碰碰97| 亚洲第一二区| 黄色片视频网站| 久久国产片| www.男人天堂.com| 午夜精品一区二区在线观看| 国产一区二区三区| 国产91精品久久久久久久网曝门| 国产91精品在线播放| 91成人黄色| 亚洲色图第一区| 69热在线观看| 国产高清视频在线免费观看| 年代下乡啪啪h文| 超碰在线色| 丁香美女社区| 日韩精品人妻无码一本| 日本成人三级在线观看| 亚洲黄色a级片| 久久爱综合| 天天综合入口| 69影院少妇在线观看| 打屁股视频网站| 精品一区二区三区免费毛片| 福利片免费看| 一边c岳一边说粗话| 欧美 日韩 国产 精品| 日韩伊人| 日本欧美不卡| 91碰碰| 欧美性第一页| 在线观看国产免费av| 成人激情文学| 岛国av网| 爱爱高潮视频| 内地伦理片| 熟妇人妻一区二区三区四区| 国产精品免费久久久久| 日本欧美不卡| 一本大道视频| 国产午夜一级| 国产97超碰| 亚洲精品1| 男女私大尺度视频| 亚洲精品av在线播放| 久久大奶| 亚洲天堂男| 日本高清视频网站| 大伊人网| 午夜色网| 911香蕉视频| 韩国精品视频| 九久久久久| 人人爱av| 2022国产精品| 国产一区精品久久| 涩涩涩999| 国产精品无码专区av免费播放| 自拍偷拍21p| 成人手机av| 青青草日韩| 精品一区二区国产| 美女插插视频| 精品久久无码视频| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 欧美一级在线播放| 九九综合九九| av电影免费在线播放| 国产精品9| 极品国产91在线网站| 国产精品亚州| 国产精品一区二区三区精品| 性欧美4khd高清极品| 美女av导航| 中文字幕日韩久久| 九九综合九九| 成人午夜电影网| 成人夜夜| 蜜桃免费网站| 日韩午夜激情| 黄色电影在线免费观看| 91丨porny丨九色| 在线污视频| 五月天综合婷婷| 亚洲国产欧美在线人成| 91国产高清| 日本美女性生活视频| 亚洲第一视频在线观看| 黄色片aaaa| 天天热天天干| 国产精品18久久久| 自拍偷拍欧美日韩| 天天色宗合| 大伊人网| 久久午夜无码鲁丝片| 91精品产国品一二三产区| 欧美色图激情小说| www.日本色| 日韩欧洲亚洲AV无码精品| 国产一区二区三区四区五区美女| 黄色视屏软件| 亚洲欧美色视频| 午夜精品国产精品大乳美女 | 18p在线观看| 午夜在线观看视频网站| 综合天天色| 日韩欧美三区| 久久第四色| 麻豆911| 欧美激情图片| 久久免费视频一区二区| 国产美女福利视频| 在线观看福利网站| 国产片在线观看| 正在播放国产一区| 欧美少妇激情视频| 日本不卡二区| 亚洲综合国产| 欧美xxxx×黑人性爽| 永久免费啪啪网站| 天天色播| 国产精选久久| 玖玖精品| 美女精品一区| 首页av在线| 法国空姐 在线| 国产精品免费一区二区三区在线观看| 丁香花高清视频完整电影| 五月天亚洲综合| 亚洲精品成人久久久| 亚洲欧洲视频| 成人女人免费毛片| 91免费看片网站| 中国成人毛片| 99情趣网| 欧美三p| 在线观看av日韩| 男人av网站| 亚洲中文字幕在线观看| 日本偷拍一区| 人妻少妇精品久久| 91操人视频| 天堂a在线| 欧美春色| 懂色av粉嫩av蜜乳av| 成人性生交大片免费卡看| 欧美恋足| 日韩精品免费一区二区夜夜嗨| 久久黑人| 男生和女生靠逼视频| 午夜激情亚洲| 中国男人操女人| 久久久亚洲精品视频| 亚洲久久影院| 中文字幕永久视频| 福利视频导航网址| 黄色h视频| 99精彩视频| 亚洲欧美一区二区三区国产精品| 天堂中文av在线| 中文字幕亚洲综合久久| 黄色小视频国产| 51国产视频| 欧美精品成人一区二区三区四区| 91av观看| 国产麻豆一级片| 九九热视频在线| 男生操女生动漫| 国产精品 欧美精品| 久久久精品视频在线观看| 女生裸身视频网站| sleepless动漫在线播放免费观看| 一本免费视频| 91老师片黄在线观看| 亚洲精品三| 黄色特级大片| 天天操,夜夜操| 精产国品一区二区| 日本va欧美va欧美va精品| 奇米一区二区三区| 麻豆app下载| 中文av一区二区三区| av线上免费看| 久久国产柳州莫菁门| 男插女视频免费| 人人狠狠综合久久亚洲| 国产精品第13页| 免费黄在线| 白石茉莉奈黑人| 囯产精品一品二区三区| 欧美人伦| 成人免费看片| 51精产品一区一区三区| 国产性猛交xxxx免费看久久| 瑟瑟网站免费| 性欧美free| 午夜爱爱网| 黄色综合| 成人娱乐网| 非洲黑寡妇性猛交视频| 风流少妇| 亚洲国产一区二区三区| 免费观看h片| 日韩欧洲亚洲AV无码精品| 亚洲国产亚洲| 国内av在线| 欧美xxxx黑人xyx性爽| 久久爱综合| 欧美性生活网| 激情综合网五月| 免费操片| 久久福利影院| 欧美高清在线播放| 欧美成人一二区| 中文字幕在线视频免费观看| 色人阁在线视频| 国产色片在线观看| 亚洲色图插插插| 蜜桃福利视频| 91视频三区| 在线观看免费视频国产| 夫妻毛片| 午夜性视频| 亚洲欧洲av| 天天av天天干| 在线看片网站| 日本一区二区免费在线| 男女互操网站| 久久成人一区二区三区| 欧美午夜寂寞影院| 四虎影视成人永久免费观看视频| 国产情侣av在线| 69av导航| 天天干天天做| 私密视频在线观看| 久久久资源| 无码h黄肉3d动漫在线观看| 少妇综合| 国产女主播视频| 青青操原| 日本瑟瑟网站| 天堂网91| 四虎影院免费| www久久久久久| 欧美黄片一区| 国产又粗又长又黄的视频| 久久88| 国产区一区二区| 成人免费视频毛片| 亚洲小说欧美激情另类| 色人人| 奇米二区| 欧美xxxx黑人xyx性爽| 性xxxx欧美| 看看毛片视频| 久久久久无码国产精品一区李宗瑞| 日韩av成人| 特黄a级片| 久久综合久久综合久久综合| 国产一二视频| 依人综合| 国精产品一区一区三区免费视频| 福利视频免费| 亚洲婷婷小说| 色先锋av资源中文字幕| 国产精品偷乱一区二区三区| а√天堂www在线天堂小说| 久久不雅视频| 国产极品尤物在线| 国产精品99久久久久久久久久久久| 欧美性生活网| 丝袜导航| 艳色歌舞团一区二区三区| 奇米成人网| 欧美日韩国产激情| 天天操天天操天天干| 久爱视频在线观看| www.狠狠撸.com| 国产精品3p视频| 蜜乳av红桃嫩久久| 成人夜夜| 欧美激情成人在线视频| 日本系列第一页| 理伦影院| 久久久精品福利| 中文字幕91爱爱| 亚洲成色| 久久精品国产亚洲av香蕉| 亚洲欧洲av| 久久鲁一鲁| 亚洲最新中文字幕| 狠狠干五月天| 女生裸身视频网站| 桃色在线视频| 日韩欧美亚洲一区二区| 土耳其xxxx性hd极品| 越南黄色一级片| 成年女人色毛片| 色婷婷婷| av免费不卡| 国产成人久久精品麻豆二区| 色哟哟一区| 亚洲综合小说网| 美女网站视频一区| 国产精品一区二区三区四区五区| 先锋资源av网| 青青av在线| 亚洲人掀裙打屁股网站| 国产精品成人va在线观看| 成人免费影视网站| 91禁在线观看| 国产九九热视频| www网站在线免费观看| 99精品久久精品一区二区| 日韩在线视频免费播放| 国产日韩一区二区在线观看| 操比网站| 一级在线播放| 午夜羞羞小视频| 椎名空在线观看| 福利在线一区| 在线看片网站| 深夜av在线| 国产一区日韩| 国产夜色视频| 国产精品v欧美精品v日韩精品| 加勒比在线一区| 无码播放一区二区三区| 色哟哟免费在线观看| 国产5区| 网红主播av| 国产高清片| 亚洲一区在线观| 狠狠操av| 97久久精品| 一本久道久久综合| 成年人精品| 欧美特黄aaa| 欧美视频在线免费看| 免费国产高清| 911国产精品| 波多野结衣视频免费在线观看 | 青青啪啪| 一级在线| 免费亚洲视频| 久久久久久久久97| 我不卡伦理| 成人中文在线| a级片在线观看| 看片网址国产福利av中文字幕| 亚洲精品xxxx| 男女国产视频| 国产小视频在线| 成人动漫亚洲| 日本特黄一级| 日韩午夜电影| 91性视频| 亚洲一卡二卡三卡| 香蕉av网站| 日本在线播放视频| 日韩精品视频一区二区在线观看| 亚洲成人性视频| 男女插孔视频| 亚洲国产一区二区三区| 欧美成人一区二区| 在线观看福利片| 白丝女仆被免费网站| 国产一级二级三级| 日韩av区| 天天干夜夜爱| 精品成人在线| 美女av在线播放| www.男人天堂.com| 性插动态视频| 亚洲视频精品一区| 欧美性生交xxxxx久久久| 亚洲国产精品毛片av不卡在线| 亚洲成人av一区二区三区| 黄av在线| 国产日韩成人| 东京干导航| 极品熟妇大蝴蝶20p| www.久久99| 免费一区| 男生和女生靠逼视频| 久久久精品视频在线观看| 女人被男人操| 日韩欧美在线不卡| 免费a网| 性插动态视频| 丰满人妻一区二区三区无码av| 久久久久国产精品一区| 国产福利视频网站| 性高跟鞋xxxxhd国产电影| 每日av在线| 久操国产| 一本久道视频一本久道| 成人免费毛片足控| 中文字幕亚洲第一| caopeng在线视频| 亚洲成人av电影| 五月激情在线观看| 国产95在线| 9i看片成人免费看片| 男生和女生靠逼视频| 日本大胆裸体做爰视频| 青青色在线观看| 小香蕉影院| 丁香六月久久| 日不卡| 亚洲色女| 国产成人精品毛片| 国产蜜臀97一区二区三区| 韩日欧美| 欧美国产一区二区三区| 亚洲性久久| 中文字幕22页| 国产a级一级片| 天天干夜夜想| 欧美剧场| 久久首页| 嫩草导航| 福利在线一区| 五月天六月婷| 欧美女同在线| 公妇公侵无伦中文字幕| 黑寡妇4免费完整在线观看| 青青草原在线免费观看视频| 伊人色影院| 日韩色综合| 麻豆免费在线观看| 国产视频在线一区| 国产精品无码一区| 99国产成人精品| 精品少妇一区二区三区在线观看| 一级大黄色片| 少妇系列在线观看| 日韩欧av| 亚州av综合色区无码一区| 草草久久久| 欧美激情一级精品国产| 校园春色第一页| 日韩老熟| 成年人在线观看视频网站| 91精品久久久久久久99蜜桃| 日本成人三级在线观看| 国产在线不卡av| 欧美性猛xxx| 97干在线| 成人激情视频在线播放| 欧美一级在线播放| 日韩免费视频观看| 麻豆精品国产精华精华液好用吗| 国产一级片免费播放| 欧洲免费av| 深夜福利一区| 国产v亚洲v天堂无码久久久| 天天做天天摸天天爽欧美一区| 西西美女人体| a免费视频| av福利在线播放| 午夜日韩电影| 亚洲乱妇老熟女爽到高潮的片| 97在线中文字幕| 亚洲天堂五月| 激情五月婷婷| 一级中文片| 1级黄色片| 久久伊人国产| 深夜福利一区| 欧洲色播| 黄瓜视频色版| 欧美久久久久久又粗又大| 国产午夜精品无码一区二区| 亚洲精品在线不卡| 精品视频一区二区三区在线观看| av东方在线| 国产一区二区三区| 国产日韩a| 91性视频| 亚洲一区二区在线视频观看| 久久久久无码国产精品| 夜夜精品一区二区无码| 香蕉成人app| 亚洲一级网站| 日韩一级在线播放| 成人av影院| 日韩av毛片| 性淫影院| 小萝莉末成年一区二区| 亚洲性久久| 欧美日韩免费高清| 小泽玛丽亚在线观看| 欧美另类tv| 激情播播网| 宅男天堂网| 视频在线你懂的| 日日爱669| 卡一卡二av| 久久精品99久久香蕉国产色戒| 海角社区id:1220.7126,10.| 欧美成人区| 又黄又色的网站| 午夜久久视频| 无码播放一区二区三区| 国产一区二区伦理片| 欧美激情动态图| 色人阁在线| 奇米成人网| av中文在线观看| 午夜性色福利视频| 校园春色 亚洲色图| 丝袜美女av| 99热6这里只有精品| 欧美日韩激情视频| 国产精品国色综合久久| 欧美系列第一页| 黄色免费av| 爱情岛亚洲首页论坛| 插插宗合网| 99热这里只有精| 国产福利在线看| 亚洲五码av| 大奶av在线| www.av视频在线观看| 奇米av在线| 国产乱子伦农村叉叉叉| 在线观看av日韩| 欧美黄色一级生活片| 一区二区三区高清| 丁香花在线影院观看在线播放| 澳门免费av| 澳门免费av| 午夜网站免费| 中国成人毛片| 天天噜夜夜噜| 青青av在线| 成年人av在线| 国产精品无码一区二区在线| 亚洲色欲色欲www| 老司机在线精品视频| 丝袜诱惑av| av在线首页| 国产蜜臀97一区二区三区| 成人97| 特级毛片av| 麻豆91视频| 波多野结衣最新番号| 91香蕉视频官网| 一级免费观看视频| 国产毛茸茸| 99天堂网| 香蕉视频一区| 久久免费看少妇高潮v片特黄| 在线免费国产| 极品销魂美女一区二区 | 亚洲小说欧美激情另类| 18网站在线看| 免费在线观看视频a| 美女网站视频一区| 欧美aaa一级片| 亚洲av成人精品午夜一区二区| 色先锋av| 小早川怜子中文字幕| 奇米激情| 天天国产视频| 亚洲色图88| 91婷婷射| 久久欧洲| 亚洲欧美色图小说| 国产在线观看成人| 国产精品亚洲色图| 国模思思| mm视频在线观看| 天天干夜夜嗨| 白白色在线观看| 亚洲青青草| 一区二区的视频| 能直接看的av| 欧美人xxx| 后进极品白嫩翘臀在线视频| 国产一区日韩欧美| 综合 欧美 亚洲日本| 影音先锋中文字幕一区| 日本久久电影| 老汉av在线| 国产乱人视频| 成人污在线观看| 91成人黄色| 狠狠爱综合网| 老司机在线精品视频| 国产porn在线| 成人午夜短视频| 国产黄色片在线观看| 国产主播av在线| 欧美综合一区二区| 农村妇女av| 久久久资源| 免费观看h片| 69av视频在线观看| 日本精品一区在线| 色先锋av资源中文字幕| 日韩av中文在线| 女人看黄色网| 成人免费黄色网址| 久久99精品久久只有精品| www.777含羞草| 日韩美女网站| 久久精品国产99精品国产亚洲性色| 男女拍拍视频| 在线视频这里只有精品| 年代下乡啪啪h文| 久久人人爽av亚洲精品天堂| 亚洲天堂不卡| 911香蕉视频| www.日韩av.com| 少妇性l交大片7724com| 美女网站视频一区| 老司机久久精品视频| 亚洲精品动漫在线观看| 天天视频亚洲| 神马午夜在线观看| 亚洲国产欧美视频| 日本午夜影院| 免费黄在线| 欧美成人极品| 欧美福利视频网站| 男生和女生靠逼视频| 欧美v视频| 欧美一级在线观看视频| 国产精品黄色片| 日韩无套| 在线涩涩| 亚洲综合小说网| 国产 丝袜 欧美中文 另类| 久久久久久无码精品大片| 总受合集lunjian双性h| 国产亚洲精品久久久久久无几年桃| 玖玖av| 精品视频免费播放| 国产亚洲精品美女久久久| 色婷婷婷| 成人手机av| 大香伊蕉| 午夜播放| 精品视频一区二区三区在线观看| av福利在线免费观看| 精品h视频| 成人av动漫网站| 亚洲av成人无码久久精品老人| 中文字幕亚洲综合| 精品欧美国产| 久爱精品| 毛片在线播放网址| 快灬快灬一下爽69| 国产一区日韩| av国产在线观看| 国产av一区二区三区日韩| 日韩欧美精品在线观看| 少妇一级淫片免费放2| 亚洲无限观看| 最近中文字幕在线视频| 天天狠天天插| 亚洲一级网站| 一区二区三区视频在线| 精品国产制服丝袜高跟| 国模少妇一区二区| 亚洲视频99| 老头吃奶性行交| 亚洲乱亚洲乱| 国产精品一区二区久久精品爱涩| 依人综合| 国产二区视频在线观看| 亚洲美女av网站| 亚洲va中文字幕| 精品黑人一区二区三区国语馆| 欧美精品成人一区二区三区四区| 免费成人在线看| av男人的天堂在线观看| 啪啪免费网| 日本高潮视频| av大片网址| 免费视频xxx| 一区二区成人av| 国产精品96久久久久久| 国产精品制服丝袜| 在线免费看污网站| 性xxxx| 久久成人在线视频| 中文字幕99| aa视频网站| 日韩伊人网| 黄色视屏软件| 男人的天堂aa| 毛片日韩| 欧美videos大乳护士334 | 日本三级影院| 免费中文字幕日韩欧美| 久久精品伊人| 久久国产热视频| 欧美特黄一级视频| 成人写真福利网| 丁香六月综合激情| 国产乱人伦偷精品视频| 少妇网站在线观看| 大尺度做爰无遮挡露器官| 国产99免费视频| 久久久91精品| 黄色免费一级片| 青青碰| 久久精品精品| 香蕉视频网址| 国产成人啪精品午夜在线观看| 欧美亚洲精品一区| 日本瑟瑟网站| 中文字幕精品三级久久久| 男人激烈吮乳吃奶爽文| 黄色片视频网站| 国产原创视频在线观看| 欧美绿帽交换xxx| 午夜国产区| 亚色在线观看| 极品少妇网站| 欧美精品成人一区二区三区四区| 天堂…中文在线最新版在线| 亚洲欧美综合视频| 午夜激情亚洲| 黄色片aaaa| 香蕉福利| 黄色免费观看网站| 美女综合网| 欧洲美女屁股眼交3| 日本久久综合| 亚洲国内在线| 黄色日批视频| 九色 国产| 精品白浆| 久久成人一区二区三区| 成人啪啪漫画羞羞漫画| 欧美日韩色视频| 日本精品在线观看视频| 三级在线视频| 打屁股外国网站| 久久视频国产| 69av在线| 国产日产精品一区二区三区| 日本在线视频一区二区| 外国a级片| 白丝女仆被免费网站| 91精品国产91久久综合桃花| 白丝女仆被免费网站| 成人蜜桃av| 碰超在线| 成人性生交大片免费卡看| 国产精品久久久久久无人区| 国产精品亚洲五月天丁香| 白浆导航| av一级黄色片| 岛国av大片| sm羞耻姿势图片| 九九国产视频| 乖女从小调教h尿便器小说| 亚洲AV成人无码久久精品同性| 视频国产一区| 艳妇臀荡乳欲伦交换在线播放| 在线观看成人黄色| 日韩免费在线观看| 白白色免费视频| 国产性猛交xxxx免费看久久| 小嫩嫩12欧美| 免费中文字幕日韩欧美| 在线免费观看福利| 在线免费观看视频一区| 成人黄色网| 国产av电影一区二区三区| av免费久久| 亚洲精品国产电影| 久久综合九色| 麻豆app在线观看| 91精品人妻一区二区三区四区| 亚洲天天| 日韩欧美视频在线播放| 日本黄频| 九九色精品| 性视频网址| 97干在线| 免费人成网| 国产在线看一区| free性丰满69性欧美天美| 日本xxxx裸体xxxx出水| 免费亚洲视频| 日本女人毛茸茸| 欧美日韩一卡| 黑人日批视频| 精人妻一区二区三区| 在线免费看av片| 老女人性视频| 91黄图| 亚洲精品一级| 先锋资源av在线| 亚洲欧美一区二区三区四区五区| 深夜宅男影院| 国产九九热视频| 91国内在线视频| 一级片福利| 人物动物互动39集免费观看| www国产| 男人靠女人免费视频网站| 亚洲av人无码激艳猛片服务器| 亚洲欧洲国产精品| 成人污污视频在线观看| 日本簧片在线观看| 欧美特黄aaa| 日本少妇高潮喷水视频| 国产又粗又长又黄视频| 欧美亚洲专区| 91人人草| 囯产精品一品二区三区| 美女三级黄色片| 国产乱大交| 男人资源网站| 美女污污视频| 玖玖色在线| 精品欧美久久久| 免费看一级视频| 爆操动漫美女| 黄页视频网站| 69成人网| 亚洲第5页| 国产一区二区三区18| 黄色九九| 免费看三级黄色片| 老牛影视av老牛影视av| 国产亚洲综合一区柠檬导航| 特黄特黄视频| 69久久久久| a级片免费看| 爱看av在线入口| 国产夫妻av| 黄色国产片| 国产精品欧美综合亚洲| 爱插美女网| 国产强伦人妻毛片| 黄色视屏在线免费观看| 日本激情视频一区二区三区| 快播黄色电影| 亚洲1级片| www.色悠悠| 91在线看视频| 亚洲超丰满肉感bbw| 国产又粗又猛又大爽| 午夜精品视频在线观看| 亚洲国产精品久久久| 小泽玛丽亚在线观看| 亚洲美女av网站| 一区亚洲| 欧美精品18| 91精品产国品一二三产区| 日韩欧洲亚洲AV无码精品| 9i看片成人免费看片| 亚洲av无码一区二区乱子仑| 天堂av在线免费| 国产精品一区二区av白丝下载| 欧美一级在线播放| 欧美激情欧美激情在线五月| 精品不卡一区| 亚洲视频欧美视频| 欧美一卡二卡在线观看| av无遮挡| www.国产com| 中文字幕乱码一区| 泽村玲子av| 羞羞的视频网站| 奇米色婷婷| 日不卡| 亚洲三区在线观看无套内射| 红桃视频成人在线| 欧美春色| 成人黄色网| 色妞综合| 色伊人色| 动漫美女被吸乳奶动漫视频| 国产一区日韩| 午夜视频在线观看一区二区| 欧美成人免费视频| 中文字幕日韩欧美| 日韩女优在线| 野外性满足hd| 第一av在线| 精品视频免费播放| 午夜性生活视频| 日韩性色| 土耳其xxxx性hd极品| 欧美性一二三区| 欧美啊啊啊| 免费在线看黄色片| 丁香花在线影院观看在线播放| h部分肌肉警猛淫文| 日韩色网址| 成人97| 欧美恋足| 成人在线18| 天海翼一区| 无码人妻av一区二区三区波多野| 精品久久久久久久久久久国产字幕| 国产精品成人一区二区| 黄色视屏软件| 欧州一区二区三区| 黄色精品一区| 性感美女av在线| 欧美一级一区二区三区| 日韩二级| 国产高清视频一区| 欧美系列第一页| 快色av| 97成人在线视频| 特级大胆西西4444人体| 91操碰| 97操操| 一级片在线免费| 第一福利网址导航| 夜夜操夜夜爱| 亚洲av永久无码精品放毛片| 毛茸茸日本熟妇高潮| 五月天中文字幕mv在线| 国产黄视频在线观看| 土耳其xxxx性hd极品| 男女啊啊啊视频| 国产区第一页| av一二区| 精品777| 在线观看日韩| 欧美成人一二区| 免费吃奶摸下激烈视频| 欧美女优一区二区| 自拍偷拍视频在线| 伊人春色网| 99久久久无码国产精品性色戒| www.久久99| 国内老熟妇对白hdxxxx| 打屁股外国网站| 日韩av在线看免费观看| 久久国产麻豆| 在线观看的av网址| 久久久91精品| 在线视频资源| 欧美春色| 国产一级特黄视频| 亚洲婷婷在线| 黄色理伦片| 国产一区二区三区亚洲| 一区在线播放| 伊人久久婷婷| 撸啊撸av| 在线观看一区视频| 男女国产视频| 影音先锋中文字幕一区| 永久免费精品| 免费日韩av电影| 中文字幕乱码人妻综合二区三区| 麻豆精品久久| 成人无码网www在线观看| 好男人www社区| 亚洲一区成人在线| 久久首页| 午夜爱爱网| 午夜一区二区三区| 在线亚洲自拍| 欧美亚洲第一页| 国产18精品乱码免费看| 少妇高潮av| gai免费观看网站| www.日韩av.com| k频道在线观看| www.好了av| 日韩精品无码一区二区三区免费| 色女综合| 久操综合| 麻豆精品在线播放| 涩影院| 日本欧美一区| 精品一区二区三区在线播放| 伊人影院中文字幕| 日韩免费在线观看| 香蕉av网站| 久草精品视频| 黄视频网站免费看| 嫩草懂你的影院| 日韩精品中文在线| 黄色茄子视频| 中文字幕影片免费在线观看| 亚洲精品xxxx| 色月婷婷| 新婚之夜高潮hd| 国产在线观看成人| 一女二男一黄一片| 波多野结衣电车| 欧美全黄| 久久国产一二三| 久久视精品| 日韩精品一区二区三区不卡| 亚洲黄色小视频| av黄色在线| 6080一级片| 久久九九爱| 裸体一区二区| 在线观看福利网站| 欧美激情图区| 黄色一级片一级片| 高h视频在线免费观看| 欧美操操| 亚洲视频福利| 91精品久久久久久久99蜜桃| 少妇与公做了夜伦理| 在线免费观看视频一区| 少妇2做爰交换朴银狐| 深夜av在线| 999在线视频| www免费观看| 欧美日韩色图| 欧美一区二区三区在线观看| 午夜在线视频| 亚洲国产精品福利| 黄色日韩视频| 中文字幕一区二区三区四区视频 | www视频在线免费观看| 国产一区,二区| 天天躁日日躁狠狠很躁2023| 黄网在线观看视频| 日韩一区二区福利| 欧美极品xxx| 免费av资源在线观看| 四虎影院在线观看免费| www.日本色| 国产黄色小说| 69av视频在线观看| 天天操人人看| 亚洲区av| 亚洲国产成人在线观看| 东京热毛片| 我不卡伦理| 午夜影院免费视频| 黄色三级小视频| 九九激情网| 伊人天天综合| 国产夫妻性生活视频| 超级碰碰97| 日韩欧美综合在线| 欧美性生交大片免费| 欧美精品成人一区二区在线观看| h在线网站| 日本xxxx裸体xxxx出水| 一级中文片| 韩国精品视频| 国产精品大片| 男男gay羞辱feet贱奴vk| 欧美精品九九| 国产精品污污| 久在草在线| 国产成人无吗| 亚洲黄色免费视频| 天堂中文字幕免费一区| 免费淫片| 99精品在线播放| 亚洲国产精品毛片av不卡在线| 中国a毛片| 性xxxx| 亚洲在线观看视频网站| 看av网站| 黄免费视频| 亚洲成人网在线观看| 99久久久精品| 日韩av在线精品| 福利片免费看| 婷婷深爱| 欧美日韩高清一区二区三区| 亚洲午夜无码毛片av久久京东热| 嫩草懂你的影院| 日韩有码在线播放| 免费的污网站| 亚洲色图一区二区| 91久久爽久久爽爽久久片| 综合网五月| 一区二区自拍| 瑟瑟网站免费| 青青草华人在线| 黄色av网站免费观看| 风流少妇| 在线观看网站污| 九九影院最新理论片| 亚洲av熟女国产一区二区性色 | 九九久久久久| 在线观看中文| 成人动漫一区二区| 亚洲色图一区二区| 成人黄色av电影| 日本色视频| 亚洲精品久久久久| 亚洲涩情| 91老司机在线| 一区视频在线| 国产专区一区二区| 亚洲一区色| 亚洲经典一区二区三区| 色哟哟亚洲| 韩国av免费在线| 污视在线看| 亚洲校园激情| 亚色综合| 一本亚洲| 污污网站在线播放| 黄色免费在线观看网站| av先锋影音| 亚洲成人网在线观看| 国产一级特黄毛片| 久久影院亚洲| 肉性天堂| 欧美另类在线播放| 久久亚洲AV成人无码一二三| 免费淫片| 夜间福利视频| 一区亚洲| 亚洲aⅴ在线观看| 国产精品3| 色婷婷影院| 国产呦| 日韩av成人| av大帝在线观看| 性欧美sm调教| 成年人免费av| 性欧美18—19sex性高清| 午夜性色福利视频| av制服丝袜| 欧美一区二区高清| 51ⅴ精品国产91久久久久久| 不卡影院| 女人逼视频| 免费一级特黄3大片视频| 凹凸精品熟女在线观看| 黄色激情四射| 一区二区在线免费观看| 久久久精品视频在线观看| 成人77777| 日本欧美亚洲| 欧美一级色| 第一页国产| 日韩欧美视频在线播放| 午夜男人的天堂| 6080一级片| 久久视频一区| 青青在线播放| 日韩六十路| 中文字幕一区二区三区四区视频| 亚洲成av人片在www色猫咪| 日本人做爰全过程| 黑人满足娇妻6699xx| 成人娱乐网| 91精品久久久久久久99蜜桃| 九九久久久久| 亚洲国产日韩av| 欧美精品性视频| 欧美国产一区二区三区| 久久精品人人| 国产porn在线| 深夜成人福利视频| 奇米婷婷| 99视频久久| 国产麻豆一级片| 毛片手机在线| 九色 国产| 国产精品aaa| 日本啪啪片| 亚洲国产va| 污污视频网站下载| 玉女心经是什么意思| 四虎黄色网址| 国产一区精品久久| 亚洲成人播放| 欧美伦理一区二区| 一级女毛片| 天天操狠狠操夜夜操| xx在线视频| 亚洲视频久久久| 精品免费一区二区三区| 超碰久久在线| 大陆一级黄色片| 亚洲毛片在线观看| 狠狠综合网| 美女精品在线观看| 97自拍视频| 少妇在线观看| 亚洲小视频| 夜夜综合| 96av在线| 亚洲情侣av| 深夜福利老司机| 97公开视频| 激情噜噜| 国产一级片一区二区| 露出调教羞耻91九色| 亚洲怡红院av| 亚洲午夜久久久| 日本欧美不卡| 在线免费观看视频一区| 国产精品男女| 伊人免费在线| 大陆极品少妇内射aaaaa| 久久久久精| 午夜粉色视频| 日韩一区二区三区免费视频| 国产在线视频一区二区| 欧美日韩精品一区二区三区| 成人黄色免费网站| 成人免费网站在线观看| 色中色在线视频| 国产va在线观看| 国产一区二区在线不卡| 亚洲av无码一区东京热久久| 美女黄色av| 亚洲欧美色图小说| 四虎四虎| 国产对白刺激视频| 免费午夜av| 国产色在线| 色戒未删节版| 亚洲第一视频在线观看| 亚洲成人二区| 日韩不卡一二区| 第一福利视频| 亚洲午夜精品一区,二区,三区| 久久亚州| 欧美黑丝少妇| 国产精品1区2区在线观看| 亚洲AV成人午夜无码精品久久| 伊人久久在线| 日韩午夜电影| 久久久黄色| 久久久午夜影院| 6080一级片| 久久网中文字幕| 亚洲一区二区中文字幕| 成人免费超碰| 中文一区在线| 国产精品日| 午夜桃色| 国产片一区二区| 五月天综合婷婷| 国产精品大全| 亚洲第5页| 成人在线你懂的| 国产精品天天操| 久久久久亚洲AV成人网人人小说| 一区不卡av| gogogo日本免费观看电视剧_第17集| 乱码丰满人妻一二三区| 久久免费视频一区二区| 男男裸体gay猛交gay| 人物动物互动39集免费观看| 精品久久无码中文字幕| 96免费视频| 精品白浆| 一级女毛片| 亚洲欧美在线视频观看| 内地伦理片| 亚洲最新中文字幕| 一级大黄色片| 高清视频一区二区三区| 91超碰免费在线| 国产视频一区二区三区在线播放| 狠狠撸狠狠操| 国产一区二区片| 欧美aⅴ在线观看| 日本a在线| 欧美综合另类| 波多野结衣在线免费视频| 亚洲第一免费播放区| 激情五月激情综合| 91导航| 色六月丁香| 久久综合色综合| 中文字幕22页| 91精品久久人妻一区二区夜夜夜| 国产又黄又爽| 日韩乱码人妻无码系列中文字幕| 天堂a在线| 四虎黄色网址| 欧美a在线观看| 91老师片黄在线观看| 日韩免费观看视频| 天天爱天天操| 欧美三级特黄| 欧美特黄一级视频| 草逼视频网站| 欧洲色综合| 中文字幕在线视频免费观看| 亚洲一区综合| 国产高清黄色| 久久久电影| 成人精品亚洲| 日韩成人专区| h在线网站| 国内外成人免费激情在线视频| 综合色吧| 国内偷拍网站| 欧美黄色一级生活片| 黄色一级片在线看| 成人免费无遮挡无码黄漫视频| 中文字幕日韩专区| 国产亚洲精品美女久久久| www.av小说| 黄色h视频| 国产美女主播在线观看| 狠狠操夜夜爽| 精品在线视频一区二区三区| av男人天堂av| 美女穴穴| 成年人午夜视频| 第一av| 黄色的一级片| 深夜视频网站| 亚洲国产精品无码观看久久| 亚洲人掀裙打屁股网站| 天天免费视频| 涩涩涩999| 午夜免费av| 中文字幕一区二区三区人妻| 老汉av在线| 日本黄频| 欧美xxx黑人xxx水蜜桃| 中字幕视频在线永久在线观看免费| 国产一区二区三区| 一区二区伦理片| 久久久无码精品亚洲无少妇| 午夜精品一区二区在线观看| 艳色歌舞团一区二区三区| 男人的天堂av女优| 五月久久| 天堂a√在线| 亚洲自拍在线观看| 日日操夜夜操视频| 在线观看av日韩| 嫩草在线看| 亚洲国内在线| 欧美一级片免费观看| 搡国产老太xxx网站| 日韩午夜电影| 天堂8中文在线| 91蜜桃臀久久一区二区| 亚洲 国产 日韩 欧美| 日本少妇与黑人| 色哟哟亚洲| 无罩大乳的熟妇正在播放| 啪啪啪毛片| 大伊人网| 性欧美4khd高清极品| 久久久久久亚洲中文字幕无码| 日韩精品一区二区在线| 亚洲欧美色图小说| www.国产com| 色婷婷视频在线观看| 第一页国产| 国产美女主播在线观看| 偷拍福利视频| 久久久久久久一| 免费下拉式漫画阅读网站| 日韩理论片在线| 黄色精品一区二区| 天天摸天天摸| 国产精品久久久久久久免费看| 极品国产91在线网站| 成人97| 精品999视频| 国产黄视频在线观看| av黄色影院| 欧美日韩制服| 国内外成人在线视频| 亚洲国产精华液网站w| 影音先锋中文字幕一区二区| 99re这里有精品| 好吊视频一区二区| 日本成人三级在线观看| 俺也去在线视频| 亚洲黄色免费网站| 日韩av影院在线观看| 99riav久久精品riav| 九色porny自拍视频| a级性生活视频| 亚洲精品免费在线观看视频| 欧美高大丰满少妇xxxx| 久久久亚洲综合| 午夜视频国产| 丝袜av网站| 蜜桃免费网站| 激情图片区| a级黄色录像| 亚洲成人播放| www.com毛片| 在线观看免费日韩av| 精品国自产在线观看| 自拍偷拍第3页| 91香蕉视频官网| 少妇高潮一69aⅹ| 亚洲国产一区二区三区在线观看| 四虎精品| 国产精品7| 欧美性爱精品一区| 77视频网页版| 西西美女人体| 91在线色| 超碰男人天堂| 极品久久久久久| 九九福利视频| 丰满人妻一区二区三区无码av| 亚洲图片欧美激情| 成人福利院| а√天堂8资源在线官网| 最新中文av| 77视频网页版| 一级久久久| 国模在线观看| 国产一二视频| 最新地址av| 国产第页| 又污又黄的网站| 18岁禁黄网站| 又污又黄的网站| 韩国性经典xxxxhd| 日韩精品欧美精品| 波多野结衣电车| 深夜成人福利视频| 日韩在线视频免费播放| 狠狠综合网| 日本www在线观看| 亚洲国产亚洲| 久久久亚洲国产| 在线观看不卡| 男人久久| 欧美大胆a| 88国产精品| 熟妇人妻一区二区三区四区| 又黄又色的网站| 瑟瑟瑟| 岛国a视频| 加勒比伊人| 女同一区二区| 黄色在线观看免费| 激情四射网站| av片在线观看网站| 天天操天天干天天摸| 国产日韩欧美在线一区| 91在线第一页| 国产精品成人网| 日韩第一页在线| 日韩美在线| 欧美三级在线观看视频| 黄色日韩视频| 枫花恋在线观看| 日韩色一区| 四虎中文字幕| 欧美青青草| 白浆导航| 成人在线你懂的| 日本女人一级片| 国产精品xxx在线观看| 欧日韩av| 视频一区 日韩| 一区二区自拍| 亚洲在线观看视频网站| 国产美女福利视频| 农村妇女av| 少妇在线观看| 日本三级在线| 狠狠做深爱婷婷综合一区| 亚洲成人资源网| 亚洲免费一区二区| 激情黄色小视频| 亚洲成人黄色| av先锋影音| 亚洲无毛| 古装三级吃奶做爰| mm1313亚洲精品| 亚欧在线| 深夜福利老司机| 午夜一区二区三区| 久久国产精品久久国产精品| 中文字幕永久视频| 欧美精品入口| 日韩av中文字幕一区二区| 国产又黄又猛又粗又爽| 中文字幕日产| 欧美另类tv| 日本在线一级| 男女搞网站| 亚洲欧美经典| 色狠狠干| 日韩有色| 黄色免费高清视频| 久久丫精品| 白白色在线观看| 国产精品揄拍500视频| 中文在线免费| 日韩欧美一区视频| 国产卡一卡二| 国产精品18久久久久久无码| www男人天堂| 久久精品国产亚洲av麻豆| 亚洲字幕| 枫花恋在线观看| 免费操片| 你懂的网站在线观看| 69成人网| 美女福利片| 拍真实国产伦偷精品| 好色婷婷| 欧美极品一区二区三区| 美女脱裤子让男人捅| 高清一区二区三区视频| 手机免费av| 免费下拉式漫画阅读网站| 国模在线观看| 波多野结衣电车| 91免费看片网站| 真实乱偷全部视频| a级片网址| 首页av在线| 老司机一区二区三区| 伊人网在线| 五月天黄色网址| 91免费国产| 666视频| 美女免费网视频| 欧美国产一区二区在线| 中文字幕国产视频| 自拍av在线| 久久久久久久久97| 亚洲成av人片在www色猫咪| 日本成人黄色片| 色综合天天| 爆操白丝美女| 亚洲精品666| 日韩欧美综合在线| 中国国产黄色片| 91蜜桃臀久久一区二区| 午夜秋霞| 四虎黄色影院| 91丨porny丨九色| 香蕉成视频人app下载安装| 激情五月婷婷| 老色鬼av| 亚洲日本japanese丝袜| 北条麻妃一区二区三区| 国产丝袜| 丁香婷婷网| 99插插| 久草久草久草| 麻豆婷婷| aaa国产大片| 中文在线网在线中文| 极品少妇网站| 黄色永久网站| 亚洲高清在线视频| 萝稚嫩紧窄h乱j交h| 四虎在线免费观看| 最新版天堂资源在线| av视屏| 五月久久| 亚洲自拍在线观看| 国产a线| 午夜免费福利影院| www.国产com| 精品999视频| 草逼视频网站| 麻豆久久久久久| 毛片直接看| 日本丰满肉感bbwbbwbbw| 蜜桃五月天| 加勒比色综合| www.com毛片| 91porny 九色| 黄色天天影视| 一区二区视频在线看| 天天草夜夜| 色综合天天| 手机免费av| 激情综合小说| 狠狠爱五月婷婷| 成人av动漫网站| 美女被变态侵犯| 美女网站视频一区| av天堂一区| 成年美女黄网| 先锋资源av| 欧美另类tv| 国产视频在线观看一区二区三区| 免费黄色a级片| 自拍偷拍欧美日韩| 精品1区2区| 欧美专区在线播放| 99在线免费视频| 婷婷色在线观看| 中文字幕成人av| 色先锋av| 国产精品亚州| 999视频| 香蕉久久夜色精品国产| 免费毛片在线视频| 激情小视频| 久久欧洲| 阿拉伯之夜完整版在线观看hd| 日韩精品一二三四区| 99天堂网| 日韩黄色短片| 午夜黄色| 777国产成人入口| 亚洲小视频| 91性高潮久久久久久久| 岛国片在线免费观看| 亚洲国产精品第一页| 亚洲影院av| 桃色网站在线观看| 在线视频这里只有精品| 亚洲色图第一区| 无码人妻aⅴ一区二区三区日本| 国产极品久久| 亚洲欧美色图| 国产在线超碰| 国产成人精品影视| 久久88| 美国女人毛片| 麻豆成人91精品二区三区| 在线亚洲色图| 法国free嫩白的18sex性| 九色91视频| 在线观看福利片| 理伦影院| 91视频最新地址| 亚洲欧美色视频| 国产一区欧美| 99re6在线| 精品国产亚洲一区二区麻豆| 成人av软件| 裸体美女免费视频网站| 在线观看亚洲欧美| 成人午夜网址| 18成人在线| 怡红院毛片| 96av在线| 99色99| 国产精品午夜在线观看| 亚洲黄色一级大片| 被黑人各种姿势猛c哭h文1| 91欧美激情一区二区三区成人| 337p粉嫩大胆噜噜噜噜69影视| 婷婷激情站| 88国产精品欧美一区二区三区| 午夜毛片在线观看| 永久免费啪啪网站| 久久不雅视频| 桃色视频在线播放| 99re这里只有精品在线观看| 毛茸茸日本熟妇高潮| 婷婷激情视频| 97影院| 美女全黄视频| 国产网红女主播精品视频| 啪啪日韩| 国产91视频在线观看| 91免费精品国自产拍在线不卡| 久久密桃| 亚洲天堂av影院| 久久综合伊人77777麻豆| 国产精品一线天粉嫩av| 成人黄色大片在线观看| 久久国产柳州莫菁门| 老a影视| 91插插影库| 午夜免费av| 手机福利视频| 午夜在线电影网| 成人啪啪漫画羞羞漫画| 日韩乱码人妻无码系列中文字幕| 白丝久久久| 亚洲第一综合网站| 夫妻性生活自拍| 国产95在线| 欧美自拍在线| 国产丝袜高跟| 男人和女人操操| 亚洲成人网在线观看| 福利网站导航| 久青草资源福利视频| 蜜桃免费网站| 免费一区二区在线观看| 超碰在线进入| 中文字幕一区二区人妻电影丶| 2018天天操夜夜操| 风骚少妇av| 亚洲国产中文字幕在线观看| 九九热视频在线| 久久成人小视频| 雪花飘电影中文高清| 中文字幕日韩欧美一区二区三区| 777国产成人入口| 亚洲黄色小视频| 在线看福利影| 欧日韩一区二区三区| 黄色片久久| 一二三区av| 午夜免费一区二区| 泽村玲子av| 色伊人色| 国产欧美视频一区二区三区| 日本在线有码| 老女人裸体视频| 久久免费看少妇高潮v片特黄| 亚洲第七页| 日本一区视频在线| 日韩片在线| 手机av观看| 日本视频免费在线| 欧美偷拍第一页| 青青草手机视频| 亚洲欧美日韩一区在线观看| 日本高清在线播放| 日本美女黄视频| 免费成人激情视频| 亚洲天堂岛| www.狠狠撸.com| 天堂视频免费看| 日韩三级一区| 久久性网| 日本午夜精品理论片a级app发布| 欧美一级在线| 国产又黄又爽| 不卡中文字幕在线| 白嫩初高中害羞小美女| 最新地址在线观看| 欧美 日韩精品| 亚洲女成人图区| av片在线观看网站| 这里有精品| 久久精品99久久香蕉国产色戒| 国产人妖在线视频| 欧美国产一区二区在线| 热久视频| 日本少妇喷水| а天堂8中文最新版在线官网| 欧美理论在线观看| 日本黄色免费看| 自拍视频一区二区| 中文字幕22页| 91麻豆精品国产91久久久久| 日韩成人一区| 美女被变态侵犯| 黑人精品一区二区| 91麻豆产精品久久久久久| 狠狠综合网| 爱爱免费视频| 日韩无套| 91亚色视频在线观看| 午夜精品久久久| 日本美女a级片| 91老师片黄在线观看| 黄色的毛片| 胖女人毛片| 蜜桃福利视频| 一级中文片| 3d成人动漫在线观看| 久久99色| 日韩全黄| 国产午夜福利精品| 爱插美女网| 国产色悠悠| 国内精品久久久久久| 日韩午夜网| 日韩成人午夜| 人人澡人人澡人人| 自拍视频国产| 99re视频精品| 狠狠狠狠干| 最新黄色网址在线观看| 四虎影视成人永久免费观看视频 | 激情综合色综合久久综合| 免费一级片网站| 深夜av在线| 亚洲一区二区电影| 国产高清精品一区| 国产对白刺激视频| 亚洲成人资源网| av免费久久| 午夜色视频| 韩国伦理在线| 亚洲精品不卡在线| 久久久无码精品亚洲无少妇| 成人77777| 中国人妖和人妖做爰| 日本 奴役 捆绑 受虐狂xxxx| 日本一区二区在线播放| 毛片网站免费在线观看| 猎艳山村丰满少妇| 另类图片亚洲色图| 久久久久9999| 金瓶狂野欧美性猛交xxxx| 性做久久久| 岛国av大片| 九九爱国产| 成人免费超碰| 亚洲精品xxx| 最新中文字幕在线观看| 国产一区二区三区| 色婷婷激情av| 强开乳罩摸双乳吃奶羞羞www| 欧美性生交大片免费| 88av在线视频| 久久av一区二区| 性欧美在线视频观看| 正在播放国产一区| 极品少妇网站| 最好看的2019免费观看| 少妇无码吹潮| 黄视频网站免费看| 在线观看成人黄色| 人人插人人插| 无码人妻一区二区三区在线视频| 亚欧精品在线观看| 亚洲欧洲国产精品| 国产九九热视频| 人妻另类 专区 欧美 制服| 久久精品精品| 在线一区二区三区视频| 国产日本欧美一区二区三区 | 一道本久久| 91本色| 做暧暧视频在线观看| 亚洲乱乱| 亚洲专区在线视频| 国产亚洲综合一区柠檬导航| 中文字幕一区二区三区四区视频 | 日本啪啪片| 国产伦理在线| 精品国自产在线观看| 风流少妇| 久久综合中文字幕| 在线亚洲自拍| 亚洲视频在线免费看| 亚洲自拍在线观看| 欧美另类日韩| 国产日韩亚洲欧美| 中国性猛交| 国产在线a视频| 美女网站视频一区| 亚洲精品你懂的| 婷婷久久久久久| 欧美夜夜| 私密视频在线观看| 日韩伊人| 成人深夜视频| 亚洲一区中文字幕在线| 黄色片视频网站| 国语对白av| 冲田杏梨一区二区三区| 非洲黄色一级片| 免费午夜av| 隔壁的美艳| 国产精品3| 在线亚洲色图| 刘亦菲久久免费一区二区| 日韩欧av| 欧美高清在线播放| 无遮挡毛片| 好吊妞在线| 国产日产精品一区| 亚洲欧美日韩国产| 99色99| 国产精品成人网| 欧美精品性生活| 看片网址国产福利av中文字幕| 99av国产精品欲麻豆| 国产在线不卡av| 少妇一级淫片免费放2| 成人免费毛片高清视频| free性黑人娇小videos| 黄色小视屏| 欧美一级色| 久久密| 成人激情文学| 一女三黑人理论片在线| 九色一区二区| 欧美亚洲综合网| 加勒比在线一区| 欧美区在线| 97成人人妻一区二区三区| 男女黄色录像| 法国free嫩白的18sex性| 青青草视频播放| av电影免费在线播放| 国产二区视频在线观看| 国产第页| 久久综合九色| 欧美性第一页| 伊人网视频在线观看| 日本三级影院| 国产成人精品一区二区在线小狼 | 九色福利| 国产精品99久久久| 国产精品久久久久久久一区探花 | 加勒比在线一区| 成人夜夜| 桃色网站在线观看| 亚洲高清免费视频| 国产精品v欧美精品v日韩精品| 欧美系列第一页| 98久久| 四虎成人在线观看| 亚洲欧美影院| 男生尿隔着内裤呲出来视频| 高清一区二区三区视频| 在线中文字幕不卡| 欧洲黄色录像| 日日操夜夜操视频| 黄色欧美大片| 亚洲成人资源网| 日韩欧av| 俺来操| 一区二区三区日本| 爆操女秘书| 欧美日韩色图| 精品一区av| 日不卡| 男生舔女生下面网站| 女体拷问一区二区三区| 一级淫片免费看| 亚洲影视一区二区三区| 福利电影一区| 婷婷中文字幕| 久久久精品国产| 四虎新网站| 最新中文字幕av专区| 四级毛片| 网站一级片| 免费成人视屏| av电影免费在线播放| xxfree性黑人hd4k高清| 超碰在线色| 超碰久久在线| 国产精品18久久久久久无码| 51国产视频| www.激情.com| 69热在线观看| 日韩av区| 国内精品福利视频| 老色鬼av| 88av在线| 色人人| 色人阁在线| 综合网五月| 2022国产精品| 最好看的2018中文中国话视频| 日本精品一区二区视频| 中文字幕网站| 毛片毛片女人毛片毛片| 男女互操网站| 国产插插视频| 玖热精品| 九九爱国产| 欧美人xxx| av影视网| 一边c岳一边说粗话| 91青草视频| 免费的污网站| 2025中文字幕| 在线观看免费视频a| 男人和女人日b视频| 92久久精品| 五月天综合婷婷| 中文字幕日韩欧美| 性高跟鞋xxxxhd国产电影| 少妇太爽了在线观看| 97在线观视频免费观看| 丰满岳妇伦在线播放| 岛国av免费看| xxfree性黑人hd4k高清| 91人人草| 天天av天天干| www.欧美视频| 中国成人毛片| 国产911视频| 日韩精品一区二区在线| 色老头免费视频| 欧美视频在线免费看| 夜夜操夜夜爱| 手机在线看片日韩| 成人av日韩| 国产网红女主播精品视频| xxfree性黑人hd4k高清| 成人动漫亚洲| 天天综合干| 中文字幕日韩欧美| 91福利在线观看| 在线观看福利片| 久久久久久久久网站| 黄色录像a级片| 国产又粗又大又爽视频| 亚洲视频久久久| 国内视频一区| 国产一区二区三区网站| 亚洲午夜av电影| 天天av天天| 精品午夜av| 饥渴放荡受np公车奶牛| 日本高清视频网站| 久久久久久久久久免费视频| 日韩av中文字幕一区二区| 亚洲经典一区二区三区| 亚洲第一免费播放区| 欧美人与动物xxxx| 色综合天天| 久草超碰在线| 97超碰在线免费| 日韩免费视频观看| www.狠狠撸.com| 电影午夜精品一区二区三区| 欧美性猛交ⅹ乱大交3| 情侣奴vk| 手机av免费在线| 中文字幕第100页| 婷婷99| 国产黄网站| 国产亚洲精品久久久久丝瓜| 快射视频网| 国产精品996| 果冻av在线| 日韩成人av在线播放| 欧美亚洲国产日韩| www四虎精品视频免费网站| 免费在线看黄色片| 国产chinese中国hdxxxx| 尤物影院在线观看| 伊人春色视频| 天天操比| 亚洲精品尤物| 香蕉福利| 黄色天天影视| 免费无码毛片一区二区app| 久久88| 一级中文片| free性丰满69性欧美天美| 欧美成人一区二区| 欧洲成人精品| 免费视频xxx| 国偷自拍| 免费黄色av网址| 扶她futa粗大做到怀孕| 亚洲制服一区| 911国产精品| 国内自拍xxxx18| 亚洲aa视频| 日韩午夜电影| 日韩一级在线观看| 午夜av网站| 秋霞影院午夜老牛影院| 男女h黄动漫啪啪无遮挡软件| 欧美性猛xxx| 亚洲制服一区| 日本中文字幕视频| 日本少妇吞精囗交视频| 三级视频网址 | 性感美女黄色片| 天堂综合在线| 久久色在线播放| 在线观看成人小视频| 一本综合色| 无码精品一区二区三区在线播放| 琪琪色视频| 97在线公开视频| 人人干人人插| 超碰在线94| 免费黄色小视频网站| 射黄视频| 在线视频免费观看| 亚洲av熟女国产一区二区性色| 亚洲 激情| 91九色蝌蚪91por成人| 精品久久久久久久久久久国产字幕| 欧美aⅴ在线观看| 欧美视频在线免费看| av影视网| av资源首页| 草视频在线| 国产视频亚洲精品| 催眠调教艳妇成肉便小说| 草视频在线| 今天最新中文字幕mv高清| 日韩免费视频观看| 亚洲色图清纯唯美| 欧美性一二三区| www.香蕉网| 亚洲区av| 四虎黄色网址| 久久久av免费| 免费久久久久| www.猫咪av| 李丽珍毛片| 久久精品国产亚洲av香蕉| 农村妇女av| 欧美裸体网站| 亚洲成人二区| 97干在线| 免费人妻精品一区二区三区| 成人免费毛片足控| 葵司ssni-879在线播放| 精品三级在线| 丝袜在线视频| 一区二区视频在线看| 色六月丁香| 99热这里只有精| 美女网站免费观看| 男人懂的网站| 免费日韩视频| 成人污在线观看| 国产黄视频在线观看| 这里只有精品99re| 自拍偷拍亚洲视频| 91精品国产91久久久久久最新| 好爽毛片| 五月天六月婷| 爱看av在线入口| 爽爽网| 老司机在线精品视频| 午夜在线观看视频网站| 久久99网| 大陆极品少妇内射aaaaa| 国产乱子视频| 蜜桃无码一区二区三区| 91香蕉视频污污| av一二三四| 日韩精品中文在线| 欧美专区一区| 熟妇人妻一区二区三区四区| 色视频一区| 国产麻豆一区| 国产高清www| 欧美一级在线观看视频| 日韩精品一区二区三区不卡| 日韩av中文在线| 国产精品日韩| 国产小视频在线观看免费| 亚洲av无码国产综合专区| 一区二区三区精彩视频| 天堂…中文在线最新版在线| 五月天中文字幕mv在线| 91精品国产高清| 国色天香av| 亚洲麻豆| 91成年人网站| 丁香花五月| 中文字幕观看在线| 久久7777| 天天国产视频| 精品国产91乱码一区二区三区| 日本护士xxxx| 国产精品第100页| 亚洲小说欧美激情另类| 亚洲视频第一页| 91九色蝌蚪91por成人| 日韩黄色视屏| 国产成人在线电影| 性做久久久| 日本高清在线一区| 日本视频免费看| 国产情侣av在线| 热久视频| 欧美高清性xxxx| 中文字幕22页| 欧美一级一级一级| 国产911视频| 高跟鞋丝袜猛烈xxxx| 新3d金梅龚玥菲| 欧美一区二区高清视频| 综合精品久久久| h在线网站| 韩国91视频| 男女免费看| 一区视频在线| 日韩精品免费在线| 亚洲情侣av| 久久精品视频在线观看| 2022天天操| 不卡的一区二区| 久久7777| 亚洲va韩国va欧美va精品| 奇米色婷婷| 日韩超碰人人爽人人做人人添| 国产六区| 欧美成人免费视频| 中文字幕天堂网| 色婷婷激情av| 中文字幕日韩久久| 91禁在线观看| 香蕉成人app| 久久成人小视频| 国产二区视频在线观看| 无码播放一区二区三区| 欧美日韩女优| 激情婷婷丁香| 欧美性生交xxxxx久久久| 国产aⅴ| av一二区| 欧美一级在线观看视频| 天天干天天要| 亚洲精品成人久久久| 不卡视频在线| 男女免费看| 亚欧精品在线观看| 色94色欧美sute亚洲线路一ni| 成人动漫亚洲| 免费黄色小视频网站| 夜夜夜夜夜操| 欧美极品一区| 中文字幕人妻熟女在线| 胖女人毛片| 91精品久久人妻一区二区夜夜夜| 午夜影院伦理片| 免费黄在线| 日韩精品一二| 日批视频免费播放| av无遮挡| 成都电影免费大全| 在线高清观看免费观看| 韩日三级视频| 女人扒开屁股爽桶30分钟| 亚洲av成人精品午夜一区二区| 久久免费毛片| 色激情网| 欧美一卡二卡在线观看| 青青青青青操| 黄网在线观看视频| 日本三级播放| 男人天堂资源网| 免费看片色| 欧美专区亚洲专区| 国产精品9| 午夜久久视频| 国产揄拍国内精品对白| 全国男人的天堂天堂网| 美女考逼| 在线观看色网站| 极品久久久久久| 国产精品字幕| 亚洲精品国产熟女久久久| 日日天天干| 97超碰在线免费| 欧美日韩国产一区| 一本色道久久88综合日韩精品| 美女网站视频久久| 伊人222成人综合网| 裸体美女免费视频网站| 日韩一区二区在线观看视频| 国产亚洲欧美在线精品| 久久综合热| 人人搞人人干| 岛国精品资源网站| 69久久久久| 欧美区在线| 91黄色图片| 美女精品在线观看| 欧美xxx黑人xxx水蜜桃| 男女黄色录像| 国产一级片在线| 波多野结衣在线| 91蜜桃臀久久一区二区| 亚洲精选免费| 成人动漫视频在线观看| 在线视频一区二区三区| 亚洲国产日韩av| 琪琪色在线视频| 自拍第二页| 伊人久久大香线蕉综合75| 播放灌醉水嫩大学生国内精品| aa在线视频| 一本一本久久a久久精品综合| 日本欧美一级| 日韩一级在线播放| 69av导航| 国产女厕一区二区三区在线视| 一区二区三区欧美| 国模大尺度一区二区三区| 黄色精品一区二区| 亚洲一区福利视频| 日本少妇xxx| 老头把女人躁得呻吟| 中文字幕日韩欧美一区二区三区| 久久密桃| 中日黄色片| 欧美三四区| 91天堂在线视频| 五月天六月婷| 日韩精品一区二区在线| 久久国产中文字幕| 午夜粉色视频| 色伊人色| 亚洲国产丝袜| 欧美v日韩| www.男人天堂.com| 网红主播av| 1区2区在线观看| 久久久久97| 国内精品免费| 欧美xxx黑人xxx水蜜桃| 久久久精品波多野结衣av| 欧美一级黑人| av在线一区二区三区| 91精品国产91久久久久青草| 麻豆av毛片| 又大又粗又长又爽正在观看| 欧美黑白大战| 麻豆精品久久| 网红主播av| 中国a毛片| 网站一级片| 久久大香| 先锋影音成人| 亚洲一区黄片| 美女操操操| 狼性av懂色av禁果av| 麻豆911| 日本中文字幕视频| av动漫网| 黄色成人免费网站| 黄色精品一区| 97免费中文视频在线观看| 日本aa在线观看| 国产精品乱码久久久久久 | 一级的大片| 国产色悠悠| 欧美成人一二区| 久久蜜桃视频| 婷婷开心激情网| 成人性生交大片免费卡看| 一级在线播放| 亚洲第七页| 丰满人妻一区二区| 免费观看av毛片| 国产精品25p| 久久免费看少妇高潮v片特黄| 久久密桃| 蜜桃av噜噜一区二区三区网址| 成年人的天堂| 亚洲啪啪网站| 奇米av在线| 四虎影像| 精品爆乳一区二区三区无码av | 久久久久久久福利| 成人三级在线视频| 亚洲第四页| 欧美男人操女人| 97看片| 欧美剧场| 欧美黑白大战| 五月天欧美| 国产亚洲综合一区柠檬导航| 狠狠干综合网| 夜夜夜夜爽| 91超在线| 高清一区二区三区视频| 欧美福利电影| 毛片日韩| 麻豆性视频| 日韩黄色免费网站| 国产一区二区三区| 偷拍福利视频| 午夜诱惑av| 在线免费观看视频一区| 欧美精品aa| 亚洲成在线| 无码视频一区二区三区在线观看| 夜夜精品一区二区无码| 91丨porny丨九色| 欧美精品1| 亚洲一区二区日韩| 国产在线看一区| 玖玖爱免费视频| 夜夜精品一区二区无码| 黄页视频网站| 久久精品免费电影| 亚洲射色| 插插影视| 欧洲成人精品| 一级裸体视频| 午夜电影一区二区| 大胸美女网站| 二区视频在线| 久久艹这里只有精品| 黄色片久久久| 91亚色视频在线观看| 色眯眯av| 日本黄色片| 中文字幕av影片| 亚洲色图21p| 日韩黄色免费网站| 伊人久久在线| 亚洲高清免费视频| 久久久久久久久久久久国产精品| 在线看国产一区| 自拍av在线| 亚洲精一区| 亚洲一本视频| 美女被变态侵犯| 美国av大片| 久久精品国产99精品国产亚洲性色| 玖玖av| 99色亚洲| 成人免费观看视频| 91手机在线观看| 久久露脸| 日韩性色| 高潮一区二区三区| 四虎在线高清免费观看| 欧美性第一页| 韩国三级hd中文字幕叫床浴室| 亚洲综合国产| 精品久久蜜桃| 成人免费av| 亚洲精品国产一区黑色丝袜| 露出调教羞耻91九色| 天天色天天操天天| 久久亚洲影院| 欧美成人一二三区| av网站免费观看| 中国免费毛片| 狠狠天天| 艳妇臀荡乳欲伦交换在线播放| 久久看毛片| 伊是香蕉大人久久| 韩日激情| 97超碰在线免费| 在教室轮流澡到高潮h| 国产对白刺激视频| 美女很黄很黄| 91国产一区二区| 一级黄色大片网站| 亚洲乱妇老熟女爽到高潮的片| 久久女同互慰一区二区三区 | 日韩小视频在线观看| 在线观看入口| 美女被啪啪| 北条麻妃一区二区三区| 国产精品羞羞答答在线观看| 视频免费在线观看| 久久夜色精品国产| 不卡的一区二区| 日韩污污| 成年人视频网站| 日日摸夜夜添狠狠添欧美| 亚洲精品综合精品自拍| 黄色片久久| 九九综合九九| 亚洲国产精品成人va在线观看| 天堂综合在线| 91美女在线| 黄色一级小视频| 日本欧美不卡| 亚洲色图一区二区| 尤物视频在线免费观看| 操操综合网| 色吧婷婷| 国产又粗又猛又爽又黄91| 在线中文字幕不卡| 日本三级影院| 国产片一区二区| 成人性色av| 黄色一级片一级片| 国产精品久久久久久久免费看| 中国免费毛片| 国产精一区二区三区| 国内精品福利视频| 美女精品网站| 色呦呦视频| 91精品国产自产在线观看| 99视频精品免费| 日韩伦理一区二区| 在线视频导航| 青草国产| 色黄视频在线观看| 蜜桃视频在线观看网站| 任你躁av一区二区三区| 秋霞影院午夜丰满少妇在线视频| 91国内在线视频| 国产又色又爽又高潮免费| 国产欧美日本一区二区三区| 久久久久国产精品一区| 黄色大片子| 成人手机av| 91在线高清| 日日夜夜狠| 国产性猛交xxxx免费看久久| 欧美日韩女优| 欧美xxxxx性| 香蕉视频网址| 欧美操操| 亚洲三级久久久| 午夜av网站| 色图偷拍| 亚洲色欧美另类| 暖暖av在线| 欧美视频在线观看一区二区| 欧美影院三区| 日韩成人高清| 欧美一级一区二区三区| 亚洲黄色精品| 台湾佬久久| 国产午夜精品无码一区二区| 日韩视频免费在线观看| 第一页国产| 国产精品自偷自拍| 在线观看国产免费av| 亚洲国产精品视频一区二区| 5级黄色片| 亚洲制服一区| 日本在线加勒比| 男生舔女生下面网站| 产乳奶汁h文1v1| 91香蕉视频污污| 天堂成人| 国产精品美女久久久久av爽| 日韩首页| 精品免费一区二区| 奇米四色在线观看| 亚洲av无码成人精品国产| 精品视频在线免费| 夜夜精品一区二区无码| 超碰女优| 青草久久伊人| 97人妻精品一区二区三区视频| a级片在线观看| 欧美特黄aaa| 亚洲五月天综合| 国产女厕一区二区三区在线视| 色小姐综合| 在线观看一区视频| 天天碰免费视频| a久久久久| 成年人免费毛片| 蜜桃一区二区三区在线| av片在线观看网站| 永久免费在线观看av| 少妇太爽了在线观看| 亚欧精品在线观看| 欧美精品一级二级三级| 国产区一区二区| 奇米一区二区三区| 秋葵视频成人| 国产精选久久| 亚洲AV无码成人国产精品色| 淫视频在线观看| av成人在线看| www插插插无码视频网站| 人妻少妇被猛烈进入中文字幕| 美人被强行糟蹋np各种play| 麻豆传媒网| 黑人一级女人全片| 综合 欧美 亚洲日本| 91免费在线看| 好色婷婷| 国产日韩欧美在线一区| 亚洲成人性视频| 免费日本高清| 亚洲精品白浆高清久久久久久| 一区二区的视频| 黄色的网站免费看| 国产剧情自拍| 日本午夜在线视频| 国产特级aaaaaa大片| 黄色一级网| 日本黄在线观看| a v视频在线观看| 秋霞久久久| 久草影视在线观看| 日韩精品免费一区二区夜夜嗨| 综合色婷婷一区二区亚洲欧美国产| 黄色片中文字幕| 国产主播精品在线| 日本中文在线播放| 日韩亚洲欧美一区| 黄色激情四射| 国产成人免费在线| 邻居的诱惑漫画| 波多野结衣免费视频观看| av片国产| 精品人妻人人做人人爽| 天天视频亚洲| 欧洲三级在线| 饥渴放荡受np公车奶牛| 卡一卡二在线视频| 蜜臀av88| www成人啪啪18软件| 黄色的网站免费观看| 国产精品88| 蜜桃免费视频| 五月天色小说| 色先锋av资源中文字幕| 午夜诱惑av| 国产一区二区在线不卡| 三级av在线| 看片网址国产福利av中文字幕| 美景之屋电影免费高清完整韩剧| 免费看操片| 日韩综合另类| 永久av在线|